DOI QR코드

DOI QR Code

Electrochemical Immunosensor Using a Gas Diffusion Layer as an Immobilization Matrix

  • Kim, Yong-Tae (Department of Chemical Engineering, Inha University) ;
  • Oh, Kyu-Ha (Biofocus Co., Ltd.) ;
  • Kim, Joo-Ho (Biofocus Co., Ltd.) ;
  • Kang, Hee-Gyoo (Bio-medical Laboratory, Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University) ;
  • Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
  • Received : 2011.03.15
  • Accepted : 2011.05.05
  • Published : 2011.06.20

Abstract

The modification of a gas diffusion layer (GDL), a vital component in polymer electrolyte fuel cells, is described here for use in the electrochemical detection of antibody-antigen biosensors. Compared to other substrates (gold foil and graphite), mouse anti-rHBsAg monoclonal antibody immobilized on gold-coated GDL (G-GDL) detected analytes of goat anti-mouse IgG antibody-ALP using a relatively low potential (-0.0021 V vs. Ag/AgCl 3 M NaCl), indicating that undesired by-reactions during electrochemical sensing should be avoided with G-GDL. The dependency of the signal against the concentration of analytes was observed, demonstrating the possibility of quantitative electrochemical biosensors based on G-GDL substrates. When a sandwich method was employed, target antigens of rHBsAg with a concentration as low as 500 ng/mL were clearly measured. The detection limit of rHBsAg was significantly improved to 10 ng/mL when higher concentrations of the 4-aminophenylphosphate monosodium salt (APP) acting on substrates were used for generating a redox-active product. Additionally, it was shown that a BSA blocking layer was essential in improving the detection limit in the G-GDL biosensor.

Keywords

References

  1. Benziger, J.; Nehlsen, J.; Blackwell, D.; Brennan, T.; Itescu, J. J. Membr. Sci. 2005, 261, 98. https://doi.org/10.1016/j.memsci.2005.03.049
  2. Mehta, V.; Cooper, J. S. J. Power Sources 2003, 114, 32. https://doi.org/10.1016/S0378-7753(02)00542-6
  3. Liu, S.; Ju, H. Biosens. Bioelectron. 2003, 19, 177. https://doi.org/10.1016/S0956-5663(03)00172-6
  4. Wang, J.; Musameh, M. Anal. Chem. 2003, 75, 2075. https://doi.org/10.1021/ac030007+
  5. Wang, J. Electroanalysis 2005, 17, 7. https://doi.org/10.1002/elan.200403113
  6. Hammerle, M.; Achmann, S.; Moos, R. Electroanalysis 2008, 20, 2279. https://doi.org/10.1002/elan.200804321
  7. Vengasandra, S. G.; Lynch, M.; Xu, J.; Henderson, E. Nanotechnology 2005, 16 2052. https://doi.org/10.1088/0957-4484/16/10/012
  8. Kumbur, E. C.; Sharp, K. V.; Mench, M. M. J. Electrochem. Soc. 2007, 154, B1315. https://doi.org/10.1149/1.2784286
  9. Lee, C. S.; Kwon, D.; Yoo, J. E.; Lee, B. G.; Choi, J.; Chung, B. H. Sensors 2010, 10, 5160. https://doi.org/10.3390/s100505160
  10. Thompson, R. Q.; Barone III, G. C.; Halsall, H. B.; Heineman, W. R. Anal. Biochem. 1991, 192, 90. https://doi.org/10.1016/0003-2697(91)90190-5
  11. Limoges, B.; Degrand, C. Anal. Chem. 1996, 68, 4141. https://doi.org/10.1021/ac9605760
  12. Pemberton, R. M.; Hart, J. P.; Stoddard, P.; Foulkes, J. A. Biosens. Bioelectron. 1999, 14, 495. https://doi.org/10.1016/S0956-5663(99)00019-6
  13. Ohtsuka, K.; Endo, H.; Morimoto, K.; Vuong, B. N.; Ogawa, H.; Imai, K.; Takenaka, S. Anal. Sci. 2008, 24, 1619. https://doi.org/10.2116/analsci.24.1619
  14. Serra, B.; Morales, M. D.; Reviejo, A. J.; Hall, E. H.; Pingarron, J. M. Anal. Biochem. 2005, 336, 289. https://doi.org/10.1016/j.ab.2004.10.039