DOI QR코드

DOI QR Code

A Facile Synthesis of SAPO-34 Molecular Sieves with Microwave Irradiation in Wide Reaction Conditions

  • Jun, Jong-Won (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Lee, Ji-Sun (Bio-refinerary Research Center, Korea Research Institute of Chemical Technology) ;
  • Seok, Hwi-Young (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Chang, Jong-San (Bio-refinerary Research Center, Korea Research Institute of Chemical Technology) ;
  • Hwang, Jin-Soo (Bio-refinerary Research Center, Korea Research Institute of Chemical Technology) ;
  • Jhung, Sung-Hwa (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • Received : 2011.03.03
  • Accepted : 2011.04.30
  • Published : 2011.06.20

Abstract

Various reaction conditions uding temperature, time and type and concentration of templates have been changed in order to facilely synthesize, especially with microwave (MW) heating, SAPO-34 molecular sieves. SAPO-34 molecular sieve can be synthesized rapidly with microwave irradiation from a gel containing tetraethylammonium hydroxide (TEAOH) as a template. However, other several templating molecules lead to SAPO-5 molecular sieve under microwave irradiation even though SAPO-34 is obtained by conventional electric synthesis from the same reactant gels. Moreover, SAPO-34 can be obtained more easily by increasing the TEAOH or silica concentration or by increasing the reaction temperature. SAPO-34 can be obtained within 5 min in a selected condition (high temperature of 210 $^{\circ}C$) with microwave heating, which may lead to a continuous production of the important material. SAPO-34 synthesized by microwave irradiation is homogeneous and small in size and shows acidity and a stable performance in the dehydration of methanol and 2-butanol to olefins, suggesting potential applications in acid catalysis.

Keywords

References

  1. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146-1147. https://doi.org/10.1021/ja00368a062
  2. Wilson, S. T. Stud. Surf. Sci. Catal. 2001, 137, 229-260. https://doi.org/10.1016/S0167-2991(01)80247-0
  3. Davis, M. E. Nature 2002, 417, 813-821. https://doi.org/10.1038/nature00785
  4. Nishiyama, N.; Kawaguchi, M.; Hirota, Y.; Van Vu, D.; Egashira, Y.; Ueyama, K. Appl. Catal. A: General 2009, 362, 193-199. https://doi.org/10.1016/j.apcata.2009.04.044
  5. Lee, K. Y.; Chae, H.-J.; Jeong, S.-Y.; Seo, G. Appl. Catal. A: General 2009, 369, 60-66. https://doi.org/10.1016/j.apcata.2009.08.033
  6. Lee, Y.-J.; Baek, S.-C.; Jun, K.-W. Appl. Catal. A: General 2007, 329, 130-136. https://doi.org/10.1016/j.apcata.2007.06.034
  7. Wragg, D. S.; Johnsen, R. E.; Balasundaram, M.; Norby, P.; Fjellvag, H.; Gronvold, A.; Fuglerud, T.; Hafizovic, J.; Vistad, O. B.; Akporiaye, D. J. Catal. 2009, 268, 290-296. https://doi.org/10.1016/j.jcat.2009.09.027
  8. Izadbakhsh, A.; Farhadi, F.; Khorasheh, F.; Sahebdelfar, S.; Asadi, M.; Feng, Y. Z. Appl. Catal. A: General 2009, 364, 48-56. https://doi.org/10.1016/j.apcata.2009.05.022
  9. Hereijgers, B. P. C.; Bleken, F.; Nilsen, M. H.; Svelle, S.; Lillerud, K.-P.; Bjorgen, M.; Weckhuysen, B. M.; Olsbye, U. J. Catal. 2009, 264, 77-87. https://doi.org/10.1016/j.jcat.2009.03.009
  10. Tian, Y.; Fan, L.; Wang, Z.; Qiu, S.; Zhu, G. J. Mater. Chem. 2009, 19, 7698-7703. https://doi.org/10.1039/b907237c
  11. Ferey, G. future, Chem. Soc. Rev. 2008, 37, 191-214. https://doi.org/10.1039/b618320b
  12. Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem. Int. Ed. 2004, 43, 2334-2375. https://doi.org/10.1002/anie.200300610
  13. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705-714. https://doi.org/10.1038/nature01650
  14. Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J. S. Catal. Survey Asia 2004, 8, 91-110. https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  15. Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. ChemPhysChem. 2006, 7, 296-319. https://doi.org/10.1002/cphc.200500449
  16. Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Chem. Eur. J. 2010, 16, 1046-1052. https://doi.org/10.1002/chem.200902382
  17. Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, Y. U. ; Jhung, S. H.; Hwang, J.-S.; Park, M. S. Angew. Chem. Int. Ed. 2005, 44, 557-560.
  18. Jhung, S. H.; Yoon, J. W.; Hwang, Y. K.; Chang, J.-S. Microporous Mesoporous Mater. 2006, 89, 9-15. https://doi.org/10.1016/j.micromeso.2005.10.001
  19. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280-285. https://doi.org/10.1039/b309142b
  20. Jhung, S. H.; Chang, J.-S.; Yoon, J. W.; Grenèche, J.-M.; Férey, G.; Cheetham, A. K. Chem. Mater. 2004, 16, 5552-5555. https://doi.org/10.1021/cm049081e
  21. Jhung, S. H.; Jin, T.; Hwang, Y.-K.; Chang, J.-S. Chem. Eur. J. 2007, 13, 4410-4417. https://doi.org/10.1002/chem.200700098
  22. Malinger, K. A.; Laubernds, K.; Son, Y.-C.; Suib, S. L. Chem. Mater. 2004, 16, 4296-4303. https://doi.org/10.1021/cm049149q
  23. Malinger, K. A.; Ding, Y.-S.; Sithambaram, S.; Espinal, L.; Gomez, S.; Suib, S. L. J. Catal. 2006, 239, 290-298. https://doi.org/10.1016/j.jcat.2006.02.005
  24. Jhung, S. H.; Chang, J.-S.; Hwang, J. S.; Park, S.-E. Microporous Mesoporous Mater. 2003, 64, 33-39. https://doi.org/10.1016/S1387-1811(03)00501-8
  25. Jhung, S. H.; Jin, T.; Kim, Y. H.; Chang, J.-S. Microporous Mesoporous Mater. 2008, 109, 58-65. https://doi.org/10.1016/j.micromeso.2007.04.031
  26. Jhung, S. H.; Jin, T.; Hwang, J.-S.; Chang, J.-S. J. Nanosci. Nanotech. 2008, 7, 2734-2740.
  27. Khan, N. A.; Jhung, S. H. Cryst. Growth Des. 2010, 10, 1860- 1865. https://doi.org/10.1021/cg901562d
  28. Venna S. R.; Carreon, M. A. J. Mater. Chem. 2009, 19, 3138- 3140. https://doi.org/10.1039/b903316e
  29. van Heyden, H.; Mintova, S.; Bein, T. Chem. Mater. 2008, 20, 2956-2963. https://doi.org/10.1021/cm703541w
  30. Jhung, S. H.; Yoon, J. W.; Hwang, J.-S.; Cheetham, A. K.; Chang, J.-S. Chem. Mater. 2005, 17, 4455-4460. https://doi.org/10.1021/cm047708n
  31. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Grenèche, J.-M.; Férey, G.; Cheetham, A. K. J. Phys. Chem. B 2005, 109, 845-850. https://doi.org/10.1021/jp046188g
  32. Schott-Darie, C.; Kessler, H.; Benazzi, E. Stud. Surf. Sci. Catal. 1994, 83, 3-10. https://doi.org/10.1016/S0167-2991(08)63235-8
  33. Gonzalez, G.; Pina, C.; Jacas, A.; Hernandez, M.; Leyva, A. Microporous Mesoporous Mater. 1998, 25, 103-108. https://doi.org/10.1016/S1387-1811(98)00178-4
  34. Batista, J.; Kaueie, V.; Rajiae, N.; Stojakoviae, D. Zeolites 1992, 12, 925-928. https://doi.org/10.1016/0144-2449(92)90156-J
  35. Concepcion, P.; Nieto, J. M. L.; Mifsud, A.; Perez-Pariente, J. Zeolites 1996, 16, 56-64. https://doi.org/10.1016/0144-2449(95)00097-6
  36. Xu, Y.; Maddox, J.; Couves, J. W. J. Chem. Soc. Faraday Trans. 1990, 86, 425-429. https://doi.org/10.1039/ft9908600425
  37. Lohse, U.; Bertram, R.; Jancke, K.; Kurzawaski, I.; Parlitz, B.; Louffler, E.; Schreier, E. J. Chem. Soc. Faraday Trans. 1995, 91, 1163-1172. https://doi.org/10.1039/ft9959101163
  38. Hu, Y.; Navrotsky, A.; Chen, C.-Y.; Davis, M. E. Chem. Mater. 1995, 7, 1816-1823. https://doi.org/10.1021/cm00058a010

Cited by

  1. Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction vol.111, pp.1, 2014, https://doi.org/10.1007/s11144-013-0639-1
  2. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction vol.4, pp.12, 2014, https://doi.org/10.1039/C4CY00775A
  3. Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34 vol.118, pp.2, 2016, https://doi.org/10.1007/s11144-016-1023-8
  4. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications vol.7, pp.21, 2017, https://doi.org/10.1039/C7CY01466J
  5. Effect of the acid-base properties of metal phosphate molecular sieves on the catalytic performances in synthesis of propylene glycol methyl ether from methanol and propylene oxide vol.165, pp.None, 2013, https://doi.org/10.1016/j.micromeso.2012.07.051