DOI QR코드

DOI QR Code

Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Choi, Seo-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Hong, Yeon-Ju (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2011.03.24
  • Accepted : 2011.04.27
  • Published : 2011.06.20

Abstract

A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate 5 and isonicotinate 6 with alkali metal ethoxide EtOM (M = K, Na, and Li) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. Plots of pseudo-first-order rate constant $k_{obsd}$ vs. EtOM concentration exhibit upward curvature for the reactions of 5 and 6 with EtOK and EtONa but are almost linear for those with EtOLi. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has shown that $k_{EtOK}$ ${\geq}$ $k_{EtONa}$ > $k_{EtO^-}$ but $k_{EtOLi}$ < $k_{EtO^-}$. It has been concluded that $K^+$ and $Na^+$ ions catalyze the reactions by increasing the electrophilicity of the carbonyl carbon atom through formation of a 4-membered cyclic transition state $TS_3$ or $TS_4$. However, $M^+$ ion catalysis has been found to be much less significant for the reactions of 5 and 6 than for the corresponding reactions of 4-nitrophenyl picolinate 4, which was reported to proceed through a 5-membered cyclic transition state $TS_2$. Although 5 and 6 are significantly more reactive than 4-nitrophenyl benzoate 3, the reactions of 5 and 6 result in smaller $k_{EtOK}/k_{EtO^-}$ ratios than those of 3. The electron-withdrawing ability of the nitrogen atom in the acyl moiety of 5 and 6 has been suggested to be responsible for the increase in reactivity and the decrease in the $k_{EtOK}/k_{EtO^-}$ ratio.

Keywords

References

  1. Fersht, A. Enzyme Structure and Mechanism; W. H. Freeman and company: New York, U.S.A. 1985.
  2. Stryer, L. Biochemistry; W. H. Freeman and company: New York, U.S.A. 1988.
  3. Da Silva, J. J. R. Frausto.; Williams, R. J. P. The Biological Chemistry of the Elements; Clarendon Press: Oxford, U. K. 1991.
  4. Page, M. I.; Williams, A. Organic & Bioorganic Mechanisms; Longman: Singapore, 1997; pp 179-183.
  5. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, USA, 1998; p 445.
  6. Davies, A. G. Perkin 1 2000, 1997-2010.
  7. Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485- 493. https://doi.org/10.1021/ar9500877
  8. Chin, J. Acc. Chem. Res. 1991, 24, 145-152. https://doi.org/10.1021/ar00005a004
  9. Thatcher, G. R. J.; Kluger, R. Adv. Phys. Org. Chem. 1989, 25, 99-265. https://doi.org/10.1016/S0065-3160(08)60019-2
  10. Breslow, R. Adv. Enzymol. 1986, 58, 1-60.
  11. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
  12. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
  13. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551- 5557. https://doi.org/10.1021/ja00170a020
  14. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872- 4877. https://doi.org/10.1021/ic980205x
  15. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
  16. Suh, J. Acc. Chem. Res. 1992, 25, 273- 279. https://doi.org/10.1021/ar00019a001
  17. Liu, C. T.; Neverov, A. A.; Maxwell, C. I.; Brown, R. S. J. Am. Chem. Soc. 2010, 132, 3561-3573. https://doi.org/10.1021/ja910111q
  18. Edwards, D. R.; Tsang, W. Y.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2010, 84, 822-827.
  19. Brown, R. S.; Lu, Z.; Liu, C. T.; Tsang, W. Y.; Edwards, D. R.; Neverov, A. A. J. Phys. Org. Chem. 2010, 23, 1- 15.
  20. Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2009, 48, 11425-11433. https://doi.org/10.1021/ic9015965
  21. Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
  22. Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
  23. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
  24. Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon J. G. Chem. Commun. 1984, 162-163.
  25. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  26. Pregel, M. J.; Buncel, E. J. Org. Chem. 1991, 56, 5583-5588. https://doi.org/10.1021/jo00019a022
  27. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
  28. Pregel, M. J.; Dunn, E. J.; Buncel, E. Can. J. Chem. 1990, 68, 1846-1858. https://doi.org/10.1139/v90-287
  29. Buncel, E.; Pregel, M. J. J. Chem. Soc. Chem. Commun. 1989, 1566-1567.
  30. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439. https://doi.org/10.1139/v08-178
  31. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468- 1475. https://doi.org/10.1039/b501537e
  32. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
  33. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  34. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  35. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
  36. Seo, J. A.; Kim, S. I.; Hong, Y. J.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 303-308. https://doi.org/10.5012/bkcs.2010.31.02.303
  37. Hong, Y. J.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2483-2487. https://doi.org/10.5012/bkcs.2010.31.9.2483
  38. Lee, J. I.; Kang, J. S.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3543-3548. https://doi.org/10.5012/bkcs.2010.31.12.3543
  39. Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
  40. Mentz, M.; Modro, A. M.; Modro, T. A. Can. J. Chem. 1994, 72, 1933-1936. https://doi.org/10.1139/v94-246
  41. Mentz, M.; Modro, T. A. J. Chem. Soc. Perkin Trans. 2 1995, 2227-2229.
  42. Albanese, D.; Landini, D.; Maia, A. J. Org. Chem. 2001, 66, 3249-3252. https://doi.org/10.1021/jo0056388
  43. Paola, G. T.; Idania, V. Z.; Olga, T.; Yatsimirsky, A. K. J. Org. Chem. 2006, 71, 9713-9722. https://doi.org/10.1021/jo061780i
  44. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
  45. Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113.
  46. Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry; University Science Books: Sausalito, U.S.A. 2006; pp 500-502.
  47. Jones, R. A. Y. Physical and Mechanistic Organic Chemistry; Cambridge: Norwich, 1984; pp 265-287.
  48. Samuel, D.; Silver, B. L. Adv. Phys. Org. Chem. 1965, 3, 123-186. https://doi.org/10.1016/S0065-3160(08)60300-7
  49. Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237-330. https://doi.org/10.1016/S0065-3160(08)60312-3
  50. McClelland, R. A.; Santry, L. J. Acc. Chem. Res. 1983, 16, 394-399. https://doi.org/10.1021/ar00095a001
  51. Um, I. K.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  52. Zhan, C. G.; Landry, D. W.; Ornstein, R. L. J. Am. Chem. Soc. 2000, 122, 1522-1530. https://doi.org/10.1021/ja993311m
  53. Hori, K.; Hashitani, Y.; Kaku, Y.; Ohkubo, K. Theochem. 1999, 461-462, 589-596. https://doi.org/10.1016/S0166-1280(98)00473-4
  54. Kirsch, J. F.; Clewell, W.; Simon, A. J. Org. Chem. 1968, 33, 127-132. https://doi.org/10.1021/jo01265a023

Cited by

  1. -4-Nitrophenyl Phenylphosphonothioate with Alkali-Metal Ethoxides vol.86, pp.6, 2013, https://doi.org/10.1246/bcsj.20130015
  2. Kinetic Study on Aminolysis of 4-Nitrophenyl Nicotinate and Isonicotinate: Factors Influencing Reactivity and Reaction Mechanism vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2443