DOI QR코드

DOI QR Code

Microstructure and Antibacterial Activity of Phosphonium Montmorillonites

  • Xie, Agui (Department of Chemistry, Jinan University) ;
  • Yan, Wenyan (Department of Chemistry, Jinan University) ;
  • Zeng, Xianshen (Department of Chemistry, Jinan University) ;
  • Dai, Guangjian (Department of Chemistry, Jinan University) ;
  • Tan, Shaozao (Department of Chemistry, Jinan University) ;
  • Cai, Xiang (Department of Chemistry, Jinan University) ;
  • Wu, Ting (Department of Chemistry, Jinan University)
  • Received : 2010.11.24
  • Accepted : 2011.04.21
  • Published : 2011.06.20

Abstract

Phosphonium montmorillonites (P-MMTs) were prepared by intercalating dodecyl tributyl phosphonium salt into sodium montmorillonite (Na-MMT) through an ion-exchange method. Microstructure and antibacterial activity of phosphonium montmorillonites were studied by FT-IR, TGA, XRD and Minimum Inhibitory Concentration (MIC), respectively. The results show that phosphonium montmorillonites exhibit higher thermal stability than conventional ammonium montmorillonites, the onset temperature of decomposition is higher than 300 $^{\circ}C$, and the basal spacing of phosphonium montmorillonites is enlarged compared to that of sodium montmorillonite. Phosphonium montmorillonites also show good antibacterial activity with the MIC against E. coli and S. aureus of 150 and 50 $mg{\cdot}L^{-1}$, respectively.

Keywords

References

  1. Kozak, M.; Domka, L. J. Phys. Chem. Solids 2004, 65, 441-445. https://doi.org/10.1016/j.jpcs.2003.09.015
  2. El-Nahhal, Y. Z.; Safi, J. M. J. Colloid Interf. Sci. 2004, 269, 265- 273. https://doi.org/10.1016/S0021-9797(03)00607-6
  3. Rytwo, G.; Tavasi, M.; Afuta, S.; Nir, S. Appl. Clay Sci. 2004, 24, 149-157. https://doi.org/10.1016/j.clay.2003.03.005
  4. Arroyo, M.; López-Manchado, M. A.; Herrero, B. Polymer 2003, 44, 2447-2453. https://doi.org/10.1016/S0032-3861(03)00090-9
  5. Yeh, J. M.; Liou, S. J.; Lin, C. Y.; Cheng, C. Y.; Chang, Y. W. Chem. Mater 2002, 14, 154-161. https://doi.org/10.1021/cm010337f
  6. Patel, H. A.; Somani, R. S.; Bajaj, H. C.; Jasra, R. V. Appl. Clay Sci. 2007, 35, 194-200. https://doi.org/10.1016/j.clay.2006.09.012
  7. Herrera, P.; Burghardt, R. C.; Phillips, T. D. Vet. Microbiol 2000, 74, 259-272. https://doi.org/10.1016/S0378-1135(00)00157-7
  8. Tan, S. Z.; Zhang, L. L.; Huang, L. H.; Zhou, J. E.; Liu, W. L. J. Ceram Soc. Jpn 2007, 115, 269-271. https://doi.org/10.2109/jcersj.115.269
  9. Awad, W. H.; Gilman, J. W.; Nyden, M.; Harris, R. H., Jr.; Sutto, T. E.; Callahan, J.; Trulove, P. C.; Delong, H. C.; Fox, D. M. Thermochim. Acta 2004, 409, 3-11. https://doi.org/10.1016/S0040-6031(03)00334-4
  10. Xie, W.; Gao, Z.; Pan, W. P.; Hunter, D.; Singh, A.; Vaia, R. Chem. Mater 2001, 13, 2979-2990. https://doi.org/10.1021/cm010305s

Cited by

  1. Thermally Stable Phosphonium Organoclay-Reinforced Polyimide Nanocomposites vol.56, pp.4, 2017, https://doi.org/10.1080/03602559.2016.1233258
  2. Allyl phosphonium salt–modified clay for photocured coatings: Influence on the properties of polyester acrylate‐based coatings vol.36, pp.5, 2011, https://doi.org/10.1002/pc.23015