DOI QR코드

DOI QR Code

Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst

  • Lee, Jun-Sung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Ji-Eun (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2011.02.17
  • Accepted : 2011.04.19
  • Published : 2011.06.20

Abstract

The $SnO_2$ with a particle size of about 300 nm instead of Ni is used in this study to overcome rapid catalytic deactivation by the formation of a $NiAl_2O_4$ spinal structure on the conventional Ni/${\gamma}$-$Al_2O_3$ catalyst and simultaneously impregnated the catalyst with potassium (K). The $SnO_2-K_2O$ impregnated Zeolite Y catalyst ($SnO_2-K_2O$/ZY) exhibited significantly higher ethanol reforming reactivity that that achieved with $SnO_2$ 100 and $SnO_2$ 30 wt %/ZY catalysts. The main products from ethanol steam reforming (ESR) over the $SnO_2$-$K_2O$/ZY catalyst were $H_2$, $CO_2$, and $CH_4$, with no evidence of any CO molecule formation. The $H_2$ production and ethanol conversion were maximized at 89% and 100%, respectively, over $SnO_2$ 30 wt %-$K_2O$ 3.0 wt %/ZY at 600 $^{\circ}C$ for 1 h at a $CH_3CH_2OH:H_2O$ ratio of 1:1 and a gas hourly space velocity (GHSV) of 12,700 $h^{-1}$. No catalytic deactivation occurred for up to 73 h. This result is attributable to the easier and weaker of reduction of Sn components and acidities over $SnO_2-K_2O$/ZY catalyst, respectively, than those of Ni/${\gamma}$-$Al_2O_3$ catalysts.

Keywords

References

  1. Koh, A. C. W.; Chen, L.; Leong, W.; Ang, T. P.; Johnson, B. F. G.; Khimyak, T.; Lin, J. Inter. J. Hydrogen Energy 2009, 34, 56913.
  2. Busca, G.; Costantino, U.; Montanari, T.; Ramis, G.; Resini, C.; Sisani, M. Inter. J. Hydrogen Energy 2010, 35, 5356. https://doi.org/10.1016/j.ijhydene.2010.02.124
  3. Campos-Skrobot, F. C.; Rizzo-Domingues, R. C. P.; Fernandes- Machado, N. R. C.; Cantao, M. P. J. Power Sources 2008, 183, 713. https://doi.org/10.1016/j.jpowsour.2008.05.066
  4. Srisiriwat, N.; Therdthianwong, S.; Therdthianwong, A. Inter. J. Hydrogen Energy 2009, 34, 2224. https://doi.org/10.1016/j.ijhydene.2008.12.058
  5. Sánchez-Sanchez, M. C.; Navarro, R. M.; Fierro, J. L. G. Catal. Today 2007, 129, 336. https://doi.org/10.1016/j.cattod.2006.10.013
  6. Goula, M. A.; Kontou, S. K.; Tsiakaras, P. E. Appl. Catal. B 2004, 49, 135. https://doi.org/10.1016/j.apcatb.2003.12.001
  7. Ribeiro, R. U.; Liberatori, J. W. C.; Winnishofer, H.; Bueno, J. M. C.; Zanchet, D. Appl. Catal. B 2009, 91, 670. https://doi.org/10.1016/j.apcatb.2009.07.009
  8. Al-Fatish, A. S. A.; Ibrahim, A. A.; Fakeeha, A. H.; Soliman, M. A.; Siddiqui, M. R. H.; Abasaeed, A. E. Appl. Catal. A 2009, 364, 150. https://doi.org/10.1016/j.apcata.2009.05.043
  9. Koo, Y.; Roh, H. S.; Seo, Y. T.; Seo, D. J.; Yoon, Y. L.; Park, S. B. Appl. Catal. A 2008, 340, 183. https://doi.org/10.1016/j.apcata.2008.02.009
  10. Soyal-Baltacioglu, F.; Aksoylu, A. E.; Onsan, Z. I. Catal. Today 2008, 138, 183. https://doi.org/10.1016/j.cattod.2008.05.035
  11. Ciambelli, P.; Palma, V.; Ruggiero, A. Appl. Catal. B 2010, 96, 190. https://doi.org/10.1016/j.apcatb.2010.02.019
  12. Jacobs, G.; Keogh, R. A.; Davis, B. H. J. Catal. 2007, 245, 326. https://doi.org/10.1016/j.jcat.2006.10.018
  13. de la Pena O'Shea, V. A.; Nafria, R.; Ramírez de la Piscina, P.; Homs, N. Inter. J. Hydrogen Energy 2008, 33, 3601. https://doi.org/10.1016/j.ijhydene.2007.10.049
  14. Zhang, B.; Tang, X.; Li, Y.; Xu, Y.; Shen, W. Inter. J. Hydro Energy 2007, 32, 2367. https://doi.org/10.1016/j.ijhydene.2006.11.003
  15. Choi, S. H.; Kim, J. S.; Yoon, Y. S. Electrochimica Acta 2004, 50, 547. https://doi.org/10.1016/j.electacta.2004.02.066
  16. Jeon, Y. A.; No, K. S.; Choi, S. H.; Ahn, J. P.; Yoon, Y. S. Electrochimica Acta 2004, 50, 907. https://doi.org/10.1016/j.electacta.2004.02.060
  17. Yang, J.; Hidajat, K.; Kawi, S. Mater. Letters 2008, 62, 1441. https://doi.org/10.1016/j.matlet.2007.08.081
  18. Kwak, B. S.; Kim, J.; Kang, M. Inter. J. Hydro Energy 2010, 35, 11829. https://doi.org/10.1016/j.ijhydene.2010.08.073
  19. Mukhopadhyay, K.; Chaudhari, R. V. J. Catal 2003, 213, 73. https://doi.org/10.1016/S0021-9517(02)00020-9
  20. Zhang, D.; Song, F.; Su, H.; Han, J.; Xu, J. Sens. Actuators B 2010, 145, 39. https://doi.org/10.1016/j.snb.2009.11.011
  21. Li, G.; Pickup, P. G. J. Power Sources 2007, 173, 121. https://doi.org/10.1016/j.jpowsour.2007.04.058
  22. Kovalenko, V. V.; Zhukova, A. A.; Rumyantseva, M. N.; Gaskov, A. M.; Yushchenko, V. V.; Ivanova, I. I.; Pagnier, T. Sens Actuators B 2007, 126, 51
  23. D'Arino, M.; Pinna, F.; Strukul, G. Appl. Catal. B 2004, 53, 61.
  24. Zhu, H.; Qin, Z.; Shan, W.; Shen, W.; Wang, J. J. Catal. 2004, 225, 267. https://doi.org/10.1016/j.jcat.2004.04.006
  25. Takemoto, T.; Joo, Y. J. Mater. Lett. 2002, 56, 793. https://doi.org/10.1016/S0167-577X(02)00615-8
  26. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy Perkin-Elmer Corporation 1992.

Cited by

  1. Zeolites: Promised Materials for the Sustainable Production of Hydrogen vol.2013, pp.2090-861X, 2013, https://doi.org/10.1155/2013/907425
  2. Preparation of Pt@SnO2 Core-Shell Nanoparticles for Photocatalytic Degradation of Formaldehyde vol.61, pp.3, 2013, https://doi.org/10.1002/jccs.201300272
  3. Time-Temperature Effect for Preparation of SnO2 Nanostructures Using Carbon Assisted vol.680, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.680.38
  4. Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study vol.21, pp.20, 2019, https://doi.org/10.1039/c9gc02449b
  5. Synthesis and Characterization of a complex mixture based on cobalt and tin and study of its application towards production of hydrogen gas from ethanol vol.1170, pp.1, 2011, https://doi.org/10.1088/1757-899x/1170/1/012002