DOI QR코드

DOI QR Code

Kinetic Study on Aminolysis of 4-Pyridyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Reaction Mechanism

  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Bae, Ae-Ri (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2011.03.22
  • Accepted : 2011.04.16
  • Published : 2011.06.20

Abstract

A kinetic study is reported for nucleophilic substitution reactions of 4-pyridyl X-substituted benzoates 7a-e with a series of alicyclic secondary amines in H2O. The Br${\o}$nsted-type plot for the reactions of 4-pyridyl benzoate 7c is linear with ${\beta}_{nuc}$ = 0.71. The corresponding reactions of 2-pyridyl benzoate 6, which is less reactive than 7c, resulted in also a linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.77. The fact that the more reactive 7c results in a smaller ${\beta}_{nuc}$ value appears to be in accord with the reactivity-selectivity principle. The aminolysis of 7c has been suggested to proceed through a stepwise mechanism in which breakdown of the intermediate is the rate-determining step (RDS). The Hammett plot for the reactions of 7a-e with piperidine consists of two intersecting straight lines, i.e., ${\rho}_X$ = 1.47 for substrates possessing an electron-donating group (EDG) and ${\rho}_X$ = 0.91 for those possessing an electron-withdrawing group (EWG). In contrast, the corresponding Yukawa-Tsuno plot exhibits excellent linear correlation with ${\rho}_X$ = 0.79 and r = 0.56. Thus, it has been concluded that the nonlinear Hammett plot is not due to a change in the RDS but is caused by stabilization of the ground state of the substrates possessing an EDG through resonance interaction between the EDG and the C=O bond of the substrates.

Keywords

References

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  4. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  5. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824- 3829. https://doi.org/10.1021/ja00766a027
  6. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  7. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  8. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213-219. https://doi.org/10.1139/v86-037
  9. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  10. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  11. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2004, 69, 6711-6714. https://doi.org/10.1021/jo048935b
  12. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2004, 69, 4802-4807. https://doi.org/10.1021/jo049559y
  13. Castro, E. A.; Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416. https://doi.org/10.1021/jo035451r
  14. Castro, E. A.; Acuna, M.; Soto, C.; Trujillo, C.; Vásquez, B.; Santos, G. J. Phys. Org. Chem. 2008, 21, 816-822. https://doi.org/10.1002/poc.1399
  15. Galabov, B.; Ilieva, S.; Hadjieva, B.; Atanasov, Y.; Schaefer, H. F., III J. Phys. Chem. A 2008, 112, 6700-6707. https://doi.org/10.1021/jp8007514
  16. Castro, E. A.; Gazitua, M.; Rios, P.; Tobar, P.; Santos, J. G. J. Phys. Org. Chem. 2009, 22, 443-448. https://doi.org/10.1002/poc.1488
  17. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2009, 22, 1003- 1008. https://doi.org/10.1002/poc.1553
  18. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2009, 22, 1030-1037. https://doi.org/10.1002/poc.1555
  19. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  20. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567. https://doi.org/10.2174/1385272043370753
  21. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288. https://doi.org/10.1021/jo0484676
  22. Oh, H. K.; Ha, J. S.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 8219-8223. https://doi.org/10.1021/jo0487247
  23. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. https://doi.org/10.1021/jo049845+
  24. Hoque, M. E.; Guha, A. K.; Kim, C. K.; Lee, B.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919-2925. https://doi.org/10.1039/b903148k
  25. Dey, N. K.; Hoque. M. E.; Kim, C. K.; Lee, B.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425-430. https://doi.org/10.1002/poc.1478
  26. Lee, J. P.; Lee. H. W.; Okuyama, T.; Koo, I. S. Bull. Korean Chem. Soc. 2009, 30, 1893-1894. https://doi.org/10.5012/bkcs.2009.30.8.1893
  27. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975- 978. https://doi.org/10.5012/bkcs.2009.30.4.975
  28. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065-2068. https://doi.org/10.5012/bkcs.2008.29.10.2065
  29. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  30. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  31. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  32. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  33. Lee, J. P.; Im, L. R.; Bae, A. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3588- 3592. https://doi.org/10.5012/bkcs.2010.31.12.3588
  34. Um, I. H.; Yoon, S.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  35. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  36. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  37. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  38. Um, I. H.; Han, H. J.; Back, M. H.; Bae. S. Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  39. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999- 9005. https://doi.org/10.1021/jo0259360
  40. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  41. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, Mizue.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  42. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  43. Um, I. H.; Park, Y. M.; Ahn, J. A. Bull. Korean Chem. Soc. 2009, 30, 214-218. https://doi.org/10.5012/bkcs.2009.30.1.214
  44. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  45. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237- 1243. https://doi.org/10.1002/chem.200500647
  46. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 271-278. https://doi.org/10.1002/poc.1312
  47. Castro, E. A.; Cepeda, M.; Pavez, P.; Santos, J. G. J. Phys. Org. Chem. 2009, 22, 455-459. https://doi.org/10.1002/poc.1495
  48. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  49. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  50. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  51. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  52. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  53. Jencks, W. P.; Regenstein, F. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: Cleveland, OH, 1968.
  54. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
  55. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; p 148.
  56. Neuvonen, H.; Neuvonen, K.; Koch, A.; Kleinpeter, E. J. Chem. Phys. A 2005, 109, 6279-6289. https://doi.org/10.1021/jp044172k
  57. Neuvonen, H.; Neuvonen, K.; Pasanen, P. J. Org. Chem. 2004, 69, 3794-3800. https://doi.org/10.1021/jo035521u
  58. Neuvonen, H.; Neuvonen, K.; Koch, A.; Kleinpeter, E.; Pasanen, P. J. Org. Chem. 2002, 67, 6995-7003. https://doi.org/10.1021/jo020121c
  59. Neuvonen, H.; Neuvonen, K. J. Chem. Soc. Perkin Trans 1999, 2, 1497-1502.
  60. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, 1998; pp 371-386.
  61. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969; pp 480-483.
  62. Swansburg, S.; Buncel, E.; Lemieux, R. P. J. Am. Chem. Soc. 2000, 122, 6594-6600. https://doi.org/10.1021/ja0001613
  63. Pross, A. Theoretical & Physical Principles of Organic Reactivity; Wiley & Sons: New York, 1995; pp 165-169.
  64. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X
  65. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  66. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  67. Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass. Spec. 2007, 263, 205-214.
  68. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  69. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616-623. https://doi.org/10.1002/poc.1104
  70. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  71. Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091
  72. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044- 7050. https://doi.org/10.1021/jo0492259
  73. Kevill, D. N. In The Chemistry of the Functional Groups. The Chemistry of Acyl Halides; Patai, S., Ed.; Wiley: New York, 1972; Chapter 12.
  74. Kevill, D. N.; Kyong, J. B. J. Chem. Res. 2007, 4, 210-215.
  75. Kevill, D. N.; Koh, H. J. J. Phys. Org. Chem. 2007, 20, 88-92. https://doi.org/10.1002/poc.1124
  76. Kevill, D. N.; Park, B. C.; Park, K. H.; D'Souza, M. J.; Yaakoubd, L.; Mlynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580-1586. https://doi.org/10.1039/b518129a