DOI QR코드

DOI QR Code

Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures

  • Koh, Han-Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Jeonju National University of Education)
  • Published : 2011.06.20

Abstract

This report shows the rates of solvolyses for phenyl methanesulfonyl chloride ($C_6H_5CH_2SO_2Cl$, I) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone, 2,2,2-trifluroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) are reported. Three representative solvents, studies were made at several temperatures and activation parameters were determined. The thirty kinds of solvents gave a reasonably precise extended Grunwald-Winstein plot, coefficient (R) of 0.954. The sensitivity values (l = 0.61 and m = 0.34, l/m = 1.8) of phenyl methanesulfonyl chloride (I) were smaller than those obtained for benzenesulfonyl chloride ($C_6H_5SO_2Cl$, II; l = 1.01 and m = 0.61) and 2-propanesulfonyl chloride ($(CH_3)_2CHSO_2Cl$, III; l = 1.28 and m = 0.64). As with the two previously studied solvolyses, an $S_N2$ pathway with somewhat ionization reaction is proposed for the solvolyses of I. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were determined and they are also in line with values expected for a bimolecular reaction mechanism. The kinetic solvent isotope effect of 2.34 in $CH_3OH/CH_3OD$ is in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

Keywords

References

  1. Bentley, T. W. In Chemistry of Sulphonic Acids and Their Derivatives; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1991; Ch. 16, p 671.
  2. Kice, J. L. Adv. Phys. Org. Chem. 1980, 17, 65.
  3. Gordon, I. M.; Maskill, H.; Ruasse, M. F. Chem. Soc. Rev. 1989, 18, 123. https://doi.org/10.1039/cs9891800123
  4. Stedman, G. In Mechanisms of Inorganic and Organometallic Reactions; Twigg, M. V., Ed.; Plenum: New York, 1972; Vol. 8, Ch. 4.
  5. Lee, I.; Koo, I. S. Tetrahedron 1983, 39, 1803. https://doi.org/10.1016/S0040-4020(01)88691-9
  6. Tonnet, M. L.; Hambly, A. N. Aust. J. Chem. 1971, 24, 703. https://doi.org/10.1071/CH9710703
  7. Foon, R.; Hambly, A. N. Aust. J. Chem.1971, 24, 713. https://doi.org/10.1071/CH9710713
  8. Lee, I.; Koo, I. S. Bull. Korean Chem. Soc. 1981, 2, 41.
  9. Rogne, O. J. Chem. Soc. (B) 1968, 1294.
  10. Rogne, O. J. Chem. Soc. (B) 1971, 1855.
  11. Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc., Perkin Trans 2 1972, 468.
  12. Arcoria, A.; Maccarone, E.; Musumarra, G.; Tomaselli, G. A. J. Org. Chem. 1974, 24, 3595.
  13. Arcoria, A.; Ballistreri, F. P.; Musummarra, G.; Tomaselli, G. A. J. Chem. Soc., Perkin Trans 2 1981, 221.
  14. Haugton, A. R.; Laird, R. M.; Spence, M. J. J. Chem. Soc., Perkin Trans 2 1975, 637.
  15. Ballisteri, F. P.; Maccarone, E.; Musumarra, G.; Tomaselli, G. A. J. Org. Chem. 1977, 42, 1415. https://doi.org/10.1021/jo00428a032
  16. Young, P. R.; Jencks, W. P. J. Am. Chem. Soc. 1979, 101, 3288. https://doi.org/10.1021/ja00506a025
  17. Harris, J. M.; Shafer, S. G.; Moffatt, J. R.; Becker, A. R. J. Am. Chem. Soc.1979, 101, 3295. https://doi.org/10.1021/ja00506a026
  18. Karton, Y.; Pross, A. J. Chem. Soc., Perkin Trans 2 1980, 250.
  19. Pross, A.; Shaik, S. S. J. Am. Chem. Soc. 1981, 103, 3702. https://doi.org/10.1021/ja00403a015
  20. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  21. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399. https://doi.org/10.1021/jo020467n
  22. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040. https://doi.org/10.1039/b402093f
  23. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  24. Kevill, D. N.; Koh, H. J. J. Phys. Org. Chem. 2007, 20, 88. https://doi.org/10.1002/poc.1124
  25. Kevill, D. N.; Koyoshi, F.; D'Souza, M. J. Int. J. Mol. Sci. 2007, 8, 346. https://doi.org/10.3390/i8040346
  26. Kevill, D. N.; Ryu, Z. H.; Neidermeyer, M. A.; Koyoshi, F.; D'souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  27. Kevill, D. N.; Ryu, J. H. J. Chem. Res. 2007, 365.
  28. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 2008, 61.
  29. Koh, H. J.; Kevill, D. N. Phosphorus, Sulfur, Silicon 2010, 185, 865. https://doi.org/10.1080/10426500903012478
  30. Kevill, D. N.; Park, K. H.; Koh, H. J. J. Phys. Org. Chem. 2010, 23, POC1767.
  31. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships, Vol. 4, Charton, M., ed.; JAI Press: Greenwich, CT, 1996; pp 81-115.
  32. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  33. Swain, C. G.; Langsdorf, W. P. J. Am. Chem. Soc. 1951, 73, 2813. https://doi.org/10.1021/ja01150a113
  34. Jenkins, F. E.; Hambly, A. N. Austral. J. Chem. 1961, 14, 205. https://doi.org/10.1071/CH9610205
  35. Lee, I.; Rhyu, K. B.; Lee, C. J. Korean Chem. Soc. 1979, 23, 277.
  36. Kim, W. K.; Lee, I. J. Korean Chem. Soc. 1974, 18, 8.
  37. Spillane, W. J.; McHugh, F. A.; Burke, P. O. J. Chem. Soc., Perkin Trans 2 1998, 13.
  38. Hall, H. K., Jr. J. Am. Chem. Soc. 1956, 78, 1450. https://doi.org/10.1021/ja01588a048
  39. Hall, H. K., Jr.; Lucck, C. H. J. Org. Chem. 1963, 28, 2818. https://doi.org/10.1021/jo01045a080
  40. Ko, E. C. F.; Robertson, R. E. J. Am. Chem. Soc. 1972, 94, 573. https://doi.org/10.1021/ja00757a041
  41. Rogne, O. J. Chem. Soc., B 1969, 663. https://doi.org/10.1039/j29690000663
  42. Lee, B. C.; Lee, I. J. Korean Chem. Soc. 1980, 24, 342.
  43. Manege, L. C.; Ueda, T.; Hojo, M.; Rujio, M. J. Chem. Soc., Perkin Trans 2 1998, 1961.
  44. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759. https://doi.org/10.1002/poc.425
  45. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  46. Lee, I.; La, S. M.; Lee, B. S.; Shon, S. C. J. Korean Chem. Soc. 1984, 28, 210.
  47. Shaik, S. S.; Pross, A. J. Am. Chem. Soc. 1982, 104, 2708. https://doi.org/10.1021/ja00374a005
  48. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  49. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  50. Kevill, D. N.; D'Souza, M. J. Collect. Czech. Chem. Commun. 1999, 64, 1790.
  51. Kevill, D. N.; Park, B. C.; Park, K. H.; D'Souza, M. J.; Yaakoubd, L.; Mlynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580. https://doi.org/10.1039/b518129a
  52. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
  53. Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 383. https://doi.org/10.5012/bkcs.2009.30.2.383
  54. Seong, M. H.; Choi, S. H.; Lee, Y. W.; Kyong, J. B.; Kim, D. K. Bull. Korean Chem. Soc. 2009, 30, 3408.
  55. Seong, M. H.; Kyong, J. B.; Lee, Y. H.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 929. https://doi.org/10.3390/ijms10030929
  56. Lee, Y. W.; Seong, M. H.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 3366. https://doi.org/10.5012/bkcs.2010.31.11.3366
  57. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  58. Kevill, D. N.; Kim, C. B. J. Org. Chem. 2005, 70, 1490. https://doi.org/10.1021/jo048103d
  59. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans 2 1989, 1385.
  60. Kevill, D. N.; Kolwych, K. C.; Shold, D. M.; Kim, C. B. J. Am. Chem. Soc. 1973, 95, 6022. https://doi.org/10.1021/ja00799a032
  61. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  62. D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
  63. Koh, H. J.; Kang, S. J.; Kim, C. J. Bull. Korean Chem. Soc. 2009, 30, 378. https://doi.org/10.5012/bkcs.2009.30.2.378
  64. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  65. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop. 1999, 150.
  66. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Error; Wiley: New York, 1940; p 178.

Cited by

  1. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  2. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
  3. A Kinetic Study on Solvolysis of 9-Fluorenylmethyl Chloroformate vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3799
  4. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2011, https://doi.org/10.5012/bkcs.2012.33.9.2971
  5. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl vol.61, pp.1, 2011, https://doi.org/10.5012/jkcs.2017.61.1.25
  6. Kinetics and Mechanism of the Thermal and Hydrolytic Decomposition Reaction of Rosocyanin vol.50, pp.3, 2011, https://doi.org/10.1002/kin.21148