DOI QR코드

DOI QR Code

Zeolite-catalyzed Isomerization of 1-Hexene to trans-2-Hexene: An ONIOM Study

  • Li, Yan-Feng (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology) ;
  • Zhu, Ji-Qin (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology) ;
  • Liu, Hui (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology) ;
  • He, Peng (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology) ;
  • Wang, Peng (Research Institute of Petroleum Processing, SINOPEC) ;
  • Tian, Hui-Ping (Research Institute of Petroleum Processing, SINOPEC)
  • Received : 2010.12.06
  • Accepted : 2011.03.03
  • Published : 2011.06.20

Abstract

Details of the double-bond isomerization of 1-hexene over H-ZSM-5 were clarified using density functional theory. It is found that the reaction proceeds by a mechanism which involves the Br${\o}$nsted acid part of the zeolite solely. According to this mechanism, 1-hexene is first physically adsorbed on the acidic site, and then, the acidic proton transfers to one carbon atom of the double bond, while the other carbon atom of the double bond bonds with the Br${\o}$nsted host oxygen, yielding a stable alkoxy intermediate. Thereafter, the Br${\o}$nsted host oxygen abstracts a hydrogen atom from the $C_6H_{13}$ fragment and the C-O bond is broken, restoring the acidic site and yielding trans-2-hexene. The calculated activation barrier is 12.65 kcal/mol, which is in good agreement with the experimental value. These results well explain the energetic aspects during the course of double-bond isomerization and extend the understanding of the nature of the zeolite active sites.

Keywords

References

  1. Milas, I.; Nascimento, M. A. C. Chem. Phys. Lett. 2001, 338, 67. https://doi.org/10.1016/S0009-2614(01)00227-5
  2. Venuto, P. B. Microporous Mater. 1994, 2, 297. https://doi.org/10.1016/0927-6513(94)00002-6
  3. Ding, B. J.; Huang, S. P.; Wang, W. C. Appl. Surf. Sci. 2008, 254, 4944. https://doi.org/10.1016/j.apsusc.2008.01.137
  4. Corma, A. Chem. Rev. 1995, 95, 559. https://doi.org/10.1021/cr00035a006
  5. Stocker, M. Micropor. Mesopor. Mater. 1999, 29, 3. https://doi.org/10.1016/S1387-1811(98)00319-9
  6. Zardkoohi, M.; Haw, J. F.; Lunsford, J. H. J. Am. Chem. Soc. 1987, 109, 5278. https://doi.org/10.1021/ja00251a043
  7. Jin, H.; Prasetyanto, E. A.; Jiang, N.; Oh, S.-M.; Park, S.-E. Appl. Surf. Sci. 2010, 256, 5508. https://doi.org/10.1016/j.apsusc.2009.12.125
  8. Kazansky, V. B. Acc. Chem. Res. 1991, 24, 379. https://doi.org/10.1021/ar00012a004
  9. Gates, B. C. Catalytic Chemistry; John Wiley and Sons: New York, 1991.
  10. Dunning, H. N. Ind. Eng. Chem. 1953, 45, 551. https://doi.org/10.1021/ie50519a029
  11. Bounaceur, R.; Warth, V.; Sirjean, B.; Glaude, P. A.; Fournet, R.; Battin-Leclerc, F. Proc. Combust. Inst. 2009, 32, 387. https://doi.org/10.1016/j.proci.2008.05.009
  12. Lechert, H.; Dimitrov, C.; Bezuhanova, C.; Nenova, V. J. Catal. 1983, 80, 457. https://doi.org/10.1016/0021-9517(83)90269-5
  13. Bezouhanova, C.; Lechert, H.; Taralanska, G.; Meyer, A. React. Kinet. Catal. Lett. 1989, 40, 209. https://doi.org/10.1007/BF02073795
  14. Neurock, M.; van Santen, R. A. Catal. Today 1999, 50, 445. https://doi.org/10.1016/S0920-5861(99)00091-7
  15. Keane, M. A.; Alyea, E. C. J. Mol. Catal. A: Chem. 1996, 106, 277. https://doi.org/10.1016/1381-1169(95)00268-5
  16. Abbot, J.; Wojciechowski, B. W. J. Catal. 1984, 90, 270. https://doi.org/10.1016/0021-9517(84)90255-0
  17. Abbot, J.; Corma, A.; Wojciechowski, B. W. J. Catal. 1985, 92, 398. https://doi.org/10.1016/0021-9517(85)90273-8
  18. Anderson, J. R.; Chang, Y. F.; Western, R. J. J. Catal. 1989, 118, 467.
  19. Campbell, I. M. Catalysis at Surfaces; Springer: 1988.
  20. Pines, H. The Chemistry of Catalytic Hydrocarbon Conversions; Academic Press: New York, 1981.
  21. Burwell, R. L.; Shim, K. C.; Rowlinsox, H. C. J. Am. Chem. Soc. 1957, 79, 5142. https://doi.org/10.1021/ja01576a016
  22. Brouwer, D. M. J. Catal. 1962, 1, 22. https://doi.org/10.1016/0021-9517(62)90005-2
  23. Rogers, D. W.; Crooks, E.; Dejroongruang, K. J. Chem. Thermodyn. 1987, 19, 1209. https://doi.org/10.1016/0021-9614(87)90058-9
  24. Perez-Luna, M.; Cosultchi, A.; Toledo-Antonio, J. A.; Diaz-Garcia, L. Catal. Lett. 2009, 128, 290. https://doi.org/10.1007/s10562-008-9714-z
  25. Naragon, E. A. Ind. Eng. Chem. 1950, 42, 2490. https://doi.org/10.1021/ie50492a028
  26. Ishikawa, H.; Yoda, E.; Kondo, J. N.; Wakabayashi, F.; Domen, K. J. Phys. Chem. B 1999, 103, 5681. https://doi.org/10.1021/jp990444l
  27. Geobaldo, F.; Spoto, G.; Bordiga, S.; Lamberti, C.; Zecchina, A. J. Chem. Soc., Faraday Trans. 1997, 93, 1243. https://doi.org/10.1039/a607052c
  28. Kondo, J. N.; Wakabayashi, F.; Domen, K. J. Phys. Chem. B 1998, 102, 2259. https://doi.org/10.1021/jp9800416
  29. Haw, J. F.; Richardson, B. R.; Oshiro, I. S.; Lazo, N. D.; Speed, J. A. J. Am. Chem. Soc. 1989, 111, 2052. https://doi.org/10.1021/ja00188a016
  30. Aronson, M. T.; Gorte, R. J.; Farneth, W. E.; White, D. J. Am. Chem. Soc. 1989, 111, 840. https://doi.org/10.1021/ja00185a009
  31. Kondo, J. N.; Wakabayashi, F.; Domen, K. Catal. Lett. 1998, 53, 215. https://doi.org/10.1023/A:1019086712887
  32. Benco, L.; Demuth, T.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Catal. 2002, 205, 147. https://doi.org/10.1006/jcat.2001.3408
  33. Bhan, A.; Joshi, Y. V.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. B 2003, 107, 10476. https://doi.org/10.1021/jp034382h
  34. Li, Y. F.; He, P.; Zhu, J. Q.; Liu, H.; Shao, Q.; Tian, H. P. J. Mol. Struc: THEOCHEM. 2010, 940, 135. https://doi.org/10.1016/j.theochem.2009.10.034
  35. Rozanska, X.; van Santen, R. A.; Hutschka, F.; Hafner, J. J. Am. Chem. Soc. 2001, 123, 7655. https://doi.org/10.1021/ja0103795
  36. Lomratsiri, J.; Probst, M.; Limtrakul, J. J. Mol. Graphics Modell. 2006, 25, 219. https://doi.org/10.1016/j.jmgm.2005.12.007
  37. Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B 2006, 110, 25950. https://doi.org/10.1021/jp065266s
  38. Jacobs, P. A.; Martens, J. A.; Weitkamp, J.; Beyer, H. K. Faraday Discuss. Chem. Soc. 1981, 72, 353. https://doi.org/10.1039/dc9817200353
  39. Mortier, W. J.; Sauer, J.; Lercher, J. A.; Noller, H. J. Phys. Chem. 1984, 88, 905. https://doi.org/10.1021/j150649a016
  40. Trombetta, M.; Armaroli, T.; Alejandre, A. G.; Solis, J. R.; Busca, G. Appl. Catal. A: Gen. 2000, 192, 125. https://doi.org/10.1016/S0926-860X(99)00338-5
  41. Lermer, H.; Draeger, M.; Steffen, J.; Unger, K. K. Zeolites 1985, 5, 131. https://doi.org/10.1016/0144-2449(85)90019-3
  42. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, Revision D.01; Gaussian Inc., Wallingford CT, 2004.
  43. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  44. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  45. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. https://doi.org/10.1021/ja00051a040
  46. de Albuquerque Lins, J. O. M.; Nascimento, M. A. C. J. Mol. Struc: THEOCHEM. 1996, 371, 237. https://doi.org/10.1016/S0166-1280(96)04698-2
  47. Esteves, P. M.; Nascimento, M. A. C.; Mota, C. J. A. J. Phys. Chem. B 1999, 103, 10417. https://doi.org/10.1021/jp990555k
  48. Zygmunt, S. A.; Mueller, R. M.; Curtiss, L. A.; Iton, L. E. J. Mol. Struc: THEOCHEM. 1998, 430, 9. https://doi.org/10.1016/S0166-1280(98)90205-6
  49. Panjan, W.; Limtrakul, J. J. Mol. Struct. 2003, 654, 35. https://doi.org/10.1016/S0022-2860(03)00154-6
  50. Brand, H. V.; Curtiss, L. A.; Iton, L. E. J. Phys. Chem. 1993, 97, 12773. https://doi.org/10.1021/j100151a024
  51. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  52. Fottinger, K.; Kinger, G.; Vinek, H. Appl. Catal. A: Gen. 2003, 249, 205. https://doi.org/10.1016/S0926-860X(03)00192-3
  53. Krossner, M.; Sauer, J. J. Phys. Chem. 1996, 100, 6199. https://doi.org/10.1021/jp952775d
  54. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
  55. Pariente, S.; Trens, P.; Fajula, F.; Di Renzo, F.; Tanchoux, N. Appl. Catal. A: Gen. 2006, 307, 51. https://doi.org/10.1016/j.apcata.2006.03.006
  56. Clark, M. C.; Subramaniam, B. AIChE J. 1999, 45, 1559. https://doi.org/10.1002/aic.690450717

Cited by

  1. Differ So Greatly vol.134, pp.21, 2012, https://doi.org/10.1021/ja300111q
  2. The ONIOM Method and Its Applications vol.115, pp.12, 2015, https://doi.org/10.1021/cr5004419