DOI QR코드

DOI QR Code

Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization

  • Received : 2011.02.25
  • Accepted : 2011.03.31
  • Published : 2011.05.20

Abstract

Keywords

References

  1. Balalsubramanian, M.; Keay, J. G. In Comprehensive Hetero Chemistry II; McKillop, A., Ed.; Pergamon Press: Oxford, 1996; Vol. 5, Chapter 5, pp 245-300.
  2. De Kempe, N.; Keppens, M. Tetrahedron 1996, 52, 3705. https://doi.org/10.1016/0040-4020(96)00046-4
  3. Padwa, A.; Brodney, M. A.; Liu, B.; Stake, K.; Wu. T. J. Org. Chem. 1999, 64, 3595. https://doi.org/10.1021/jo982453g
  4. Katrisky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031. https://doi.org/10.1016/S0040-4020(96)00911-8
  5. Nagata, R.; Tanno, N.; Kodo, T.; Ae, N.; Yamaguchi, H.; Tamiki, N.; Antoku, F.; Tatsuno, T.; Kato, T.; Tanaka, Y.; Nakamura, M. J. J. Med. Chem. 1994, 37, 3956. https://doi.org/10.1021/jm00049a015
  6. Lesson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.; Smith, J. D.; Stevenson, G.; Chan, T.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Hoogsteen, K. J. Med. Chem. 1992, 35, 1954. https://doi.org/10.1021/jm00089a004
  7. Guo, F.; Chang, B. H.; Rizzo, C. J. Bioorg. Med. Chem. Lett. 2002, 12, 151. https://doi.org/10.1016/S0960-894X(01)00712-0
  8. Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070. https://doi.org/10.1021/ja064676r
  9. Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. Rev. 2008, 77, 137. https://doi.org/10.1070/RC2008v077n02ABEH003749
  10. Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. https://doi.org/10.1016/j.tet.2008.12.059
  11. Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. P. J. Am. Chem. Soc. 2009, 131, 4598. https://doi.org/10.1021/ja900806q
  12. Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010, 46, 327. https://doi.org/10.1039/b921113f
  13. Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. https://doi.org/10.1002/anie.200600191
  14. Zhou, Y. G. Acc. Chem. Res. 2007, 40, 1357. https://doi.org/10.1021/ar700094b
  15. Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. https://doi.org/10.1002/anie.200703925
  16. Wang, X. B.; Zhou, Y. G. J. Org. Chem. 2008, 73, 5640. https://doi.org/10.1021/jo800779r
  17. Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c
  18. Perio, B.; Dozias, M.; Hamelin, J. Org. Process Res. Dev. 1998, 2, 428. https://doi.org/10.1021/op980043o
  19. Cleophax, J.; Liagre, M.; Loupy, A. Tetrahedron 2001, 57, 9199. https://doi.org/10.1016/S0040-4020(01)00905-X
  20. Mavandadi, F.; Lidstrom, P. Curr. Top. Med. Chem. 2004, 4, 773. https://doi.org/10.2174/1568026043451078
  21. Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563. https://doi.org/10.1021/cr0509410
  22. Polshettiwar, V.; Warma, R. S. Chem. Soc. Rev. 2008, 37, 1546. https://doi.org/10.1039/b716534j
  23. Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for Organic Chemistry; Wiley- VCH: Weinheim, Germany, 2009.
  24. Kaval, N.; Halas-Dajka, B.; Vo-Thanh, G.; Dehaen, W.; Van der Eycken, J.; Matyus, P.; Loupy, A.; Van der Eycken, E. Tetrahedron 2005, 61, 9052. https://doi.org/10.1016/j.tet.2005.07.046
  25. Dunkel, P.; Turos, G.; Benyei, A.; Ludanyi, K.; Matyus, P. Tetrahedron 2010, 66, 2331. https://doi.org/10.1016/j.tet.2010.02.014
  26. Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. https://doi.org/10.1021/ol010281v
  27. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. https://doi.org/10.1021/jo0401772
  28. Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451. https://doi.org/10.5012/bkcs.2004.25.10.1451
  29. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett.2005, 7, 2309. https://doi.org/10.1021/ol050413a
  30. Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. https://doi.org/10.1016/j.tetlet.2005.02.164
  31. Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135.
  32. Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. https://doi.org/10.5012/bkcs.2007.28.12.2191
  33. Kim, S. M.; Kang, Y. K.; Cho, M. J.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435. https://doi.org/10.5012/bkcs.2007.28.12.2435
  34. Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093. https://doi.org/10.5012/bkcs.2008.29.11.2093
  35. Lee, N. R.; Kim S. M.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 829. https://doi.org/10.5012/bkcs.2009.30.4.829
  36. Kim, E. J.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1437. https://doi.org/10.5012/bkcs.2009.30.7.1437
  37. Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
  38. Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
  39. Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
  40. Kang, Y. K.; Kim, D. Y. Curr. Org. Chem. 2010, 14, 917. https://doi.org/10.2174/138527210791111768
  41. Lee, H. J.; Kim, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 785. https://doi.org/10.5012/bkcs.2011.32.3.785
  42. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. https://doi.org/10.1016/j.tetlet.2011.02.087
  43. Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
  44. Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906. https://doi.org/10.1016/j.tetlet.2010.03.105
  45. Moon, H. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 291. https://doi.org/10.5012/bkcs.2011.32.1.291
  46. Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299 https://doi.org/10.1016/S0040-4039(01)01237-0
  47. Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
  48. Kim, D. Y.; Kim, S. M.; Koh, K. O.; Mang, J. Y. Bull. Korean Chem. Soc. 2003, 24, 1425. https://doi.org/10.5012/bkcs.2003.24.10.1425
  49. Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.; Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435. https://doi.org/10.1081/SCC-120015774
  50. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565. https://doi.org/10.1016/j.tetlet.2006.05.003
  51. Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821.
  52. Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2091. https://doi.org/10.5012/bkcs.2008.29.11.2091
  53. Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659.
  54. Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. https://doi.org/10.1016/j.tetlet.2008.07.041
  55. Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2036. https://doi.org/10.5012/bkcs.2008.29.10.2036
  56. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 249. https://doi.org/10.5012/bkcs.2009.30.1.249
  57. Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
  58. Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. https://doi.org/10.1016/j.jfluchem.2008.11.001
  59. Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
  60. Kwon, B. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1441. https://doi.org/10.5012/bkcs.2009.30.7.1441
  61. Kang, S. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1439. https://doi.org/10.5012/bkcs.2009.30.7.1439
  62. Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
  63. Kang, S. H.; Kim, D. Y. Adv. Synth. Catal. 2010, 352, 2783. https://doi.org/10.1002/adsc.201000515
  64. Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420.

Cited by

  1. ChemInform Abstract: Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization. vol.42, pp.43, 2011, https://doi.org/10.1002/chin.201143161
  2. Enantioselective Conjugate Addition of 4-Hydroxycoumarin to Enones Catalyzed by Binaphthyl-Modified Primary Amine Organocatalyst vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1825
  3. Organocatalytic Synthesis of Tetrahydroquinolines from α,β-Unsaturated Ketones via 1,5-Hydride Transfer/Cyclization vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3463
  4. Enantioselective Michael Addition of 2-Hydroxy-1,4-naphthoquinone to β,γ-Unsaturated α-Keto Esters Catalyzed by Binaphthyl-Modified Squaramide vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1619
  5. Organocatalytic Enantioselective Michael Addition of Silyl Malonate to α,β-Unsaturated Enones: One-pot Synthesis of Chiral δ-Keto Esters vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2569
  6. 1,5-Hydride Transfer/Cyclization Catalyzed by Chiral Primary Amine Catalysts vol.355, pp.16, 2013, https://doi.org/10.1002/adsc.201300398
  7. Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences vol.16, pp.20, 2014, https://doi.org/10.1021/ol502575f
  8. Asymmetric Synthesis of Tetrahydroquinolines via Saegusa-type Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization Sequences vol.3, pp.4, 2014, https://doi.org/10.1002/ajoc.201400022
  9. Enantioselective organocatalytic oxidative enamine catalysis–1,5-hydride transfer–cyclization sequences: asymmetric synthesis of tetrahydroquinolines vol.50, pp.2, 2014, https://doi.org/10.1039/C3CC46710D
  10. )-H Bond Activation vol.16, pp.3, 2016, https://doi.org/10.1002/tcr.201600003
  11. Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences vol.19, pp.6, 2017, https://doi.org/10.1021/acs.orglett.7b00184
  12. Enantioselective Conjugate Addition of Pyrazolones to Nitroalkenes Catalyzed by Binaphthyl-modified Squaramide Organocatalyst vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11241
  13. -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11307
  14. Synthesis of Ring-fused Tetrahydroquinoline Derivatives via [1,5]-Hydride Transfer/Cyclization Sequences vol.38, pp.5, 2017, https://doi.org/10.1002/bkcs.11126
  15. Enantioselective Michael Addition of 3-Aryl-Substituted Oxindoles to Methyl Vinyl Ketone Catalyzed by a Binaphthyl-Modified Bifunctional Organocatalyst vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17067523
  16. -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.39, pp.1, 2018, https://doi.org/10.1002/bkcs.11354
  17. )-Ones with Aryldiazo Sulfones vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11530
  18. Organocatalytic Asymmetric Conjugate Addition of 3-Alkyl-Substituted Oxindoles to Vinyl Ketones vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3171
  19. Organocatalytic Asymmetric Michael Addition of 1,3-Cyclohexanedione to β,γ-Unsaturated α-Keto Esters vol.33, pp.11, 2011, https://doi.org/10.5012/bkcs.2012.33.11.3537
  20. Organocatalytic Oxidative Enamine Catalysis and 1,5-Hydride Transfer/Cyclization: Synthesis of Tetrahydroquinoline Derivatives vol.34, pp.12, 2011, https://doi.org/10.5012/bkcs.2013.34.12.3891
  21. Recent development of direct asymmetric functionalization of inert C-H bonds vol.4, pp.12, 2011, https://doi.org/10.1039/c3ra46996d
  22. Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl)cyclobutanol Derivatives vol.18, pp.18, 2011, https://doi.org/10.1021/acs.orglett.6b02201
  23. Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1 H )‐ones with Aryldiazonium Salts vol.3, pp.21, 2011, https://doi.org/10.1002/slct.201801431
  24. Progress in the Chemistry of Tetrahydroquinolines vol.119, pp.8, 2011, https://doi.org/10.1021/acs.chemrev.8b00567