DOI QR코드

DOI QR Code

Synthesis of Nanoporous Structured SnO2 and its Photocatalytic Ability for Bisphenol A Destruction

  • Kim, Ji-Eun (Department of Chemistry, College of Science, Yeungnam University) ;
  • Lee, Jun-Sung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2010.09.08
  • Accepted : 2011.03.21
  • Published : 2011.05.20

Abstract

Nanoporous structured tin dioxide ($SnO_2$) is characterized and its application in the photocatalytic destruction of endocrine, Bisphenol A, is examined. Transmission electron microscopy (TEM) reveals irregularly shaped nanopores of size 2.0-4.5 nm. This corresponds to the result of an average nanopore distribution of 4.5 nm, as determined by Barret-Joyner-Halenda (BJH) plot from the isotherm curve. The photoluminescence (PL) curve, corresponding to the recombination between electron and hole, largely decreases in the $TiO_2$/nanoporous $SnO_2$ composite. Finally, a synergy effect between $TiO_2$ and porous $SnO_2$ is exhibited in photocatalysis: the photocatalytic destruction of Bisphenol A is improved by combining the nanoporous structured $SnO_2$ with $TiO_2$, and 75% decomposition of 10.0 ppm of Bisphenol A is achieved after 24 h.

Keywords

References

  1. Habibi, M. H.; Vosooghian, H. J. Photochem. Photobiol. A 2005, 174, 45. https://doi.org/10.1016/j.jphotochem.2005.02.012
  2. Doh, S. J.; Kim, C.; Lee, S. G.; Lee, S. J.; Kim, H. J. Hazard. Mater. 2008, 154, 118. https://doi.org/10.1016/j.jhazmat.2007.09.118
  3. Yoon, J.; Shim, E.; Bae, S.; Joo, H. J. Hazard. Mater. 2009, 161, 1069. https://doi.org/10.1016/j.jhazmat.2008.04.057
  4. Daria, K.; Martin, T., Hugo, D.; Javiera, C. S. Appl. Clay Sci. 2009, 42, 563. https://doi.org/10.1016/j.clay.2008.03.009
  5. Chong, M. N.; Jin, B.; Chow, C.; Saint, C. Water Res. 2010, 44, 2997. https://doi.org/10.1016/j.watres.2010.02.039
  6. Kang, M.; Hong, W.-J.; Park, M.-S. Appl. Catal. B 2004, 53, 195. https://doi.org/10.1016/j.apcatb.2004.05.018
  7. Tu, Y.-F.; Huang, S.-Y.; Sang, J.-P.; Zou, X.-W. J. Alloys Compd. 2009, 482, 382. https://doi.org/10.1016/j.jallcom.2009.04.027
  8. Araujo, A. S.; Jaroniec, M. Thermochimica Acta 2000, 363, 175. https://doi.org/10.1016/S0040-6031(00)00637-7
  9. Gaydhankar, T. R.; Samuel, V.; Joshi, P. N. Mater. Lett. 2006, 60, 957. https://doi.org/10.1016/j.matlet.2005.10.049
  10. Kim, W. J.; Yoo, J. C.; Hayhurst, D. T. Micro. Meso. Mater. 2000, 39, 177. https://doi.org/10.1016/S1387-1811(00)00194-3
  11. Rarick, R. L.; Thomas, J. J.; Christensen, B. J.; Jennings, H. M. Advn. Cem. Bas. 1996, 3, 72. https://doi.org/10.1016/S1065-7355(96)90073-5
  12. Esparza, J. M.; Ojeda, M. L.; Campero, A.; Her andez, G.; Felipe, C.; Asomoza, M.; Cordero, S.; Kornhauser, I.; Rojas, F. J. Mol. Catal. A 2005, 228, 97. https://doi.org/10.1016/j.molcata.2004.09.042
  13. Singh, P. S. J. Colloid Interf. Sci. 2008, 325, 207. https://doi.org/10.1016/j.jcis.2008.05.037
  14. Armatas, G. S.; Petrakis, D. E.; Pomonis, P. J. Micro. Meso. Mater. 2005, 83, 251. https://doi.org/10.1016/j.micromeso.2005.05.005
  15. Diaz-Diez, M.A.; Gomez-Serrano, V.; Fernandez Gonzalez, C.; Cuerda-Correa, E. M.; Macias-Garcia, A. Appl. Surf. Sci. 2004,238, 309. https://doi.org/10.1016/j.apsusc.2004.05.228
  16. Yeo, M.-K.; Kang, M. Water Res. 2006, 40, 1906. https://doi.org/10.1016/j.watres.2005.12.034
  17. Chang, S.-S.; Yoon, S. O.; Park, H. J. Ceramics Inter. 2005, 31, 405. https://doi.org/10.1016/j.ceramint.2004.05.026
  18. Houskova, V.; Stengl, V.; Bakardjieva, S.; Murafa, N. J. Phys. Chem. Solids 2008, 69, 623.
  19. Khalfaoui, M.; Knani, S.; Hachicha, M. A.; Lamine, A. B. J. Colloid Interf. Sci. 2003, 263, 350. https://doi.org/10.1016/S0021-9797(03)00139-5
  20. Chieh, C. C.; Chon, K. J. Catal. 1970, 17, 71. https://doi.org/10.1016/0021-9517(70)90074-6
  21. Shifu, C.; Lei, C.; Shen, G.; Gengyu, C. Mater. Chem. Phys. 2006, 98, 116. https://doi.org/10.1016/j.matchemphys.2005.08.073

Cited by

  1. Structures and properties of SnO2 nanofibers derived from two different polymer intermediates vol.48, pp.9, 2013, https://doi.org/10.1007/s10853-012-7122-7
  2. /Basalt Fiber Films vol.2016, pp.1687-529X, 2016, https://doi.org/10.1155/2016/5195138