DOI QR코드

DOI QR Code

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi (Department of Biomedical Engineering, Dongguk University-Seoul) ;
  • Jung, Deok-Ho (Department of Biomedical Engineering, Dongguk University-Seoul) ;
  • Chae, Su-In (Department of Biomedical Engineering, Dongguk University-Seoul) ;
  • Kwon, Young-Eun (Department of Biomedical Engineering, Dongguk University-Seoul)
  • Received : 2011.02.25
  • Accepted : 2011.03.30
  • Published : 2011.05.20

Abstract

Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).

Keywords

References

  1. Somorjai, G. A.; Li, Y. Proc. Natl. Acad. Sci. 2011, 18, 917.
  2. Zacher, D.; Schmid, R.; Woll, C.; Fischer, R. A. Angew. Chem. Int. Ed. 2011, 50, 176. https://doi.org/10.1002/anie.201002451
  3. Bartels, L. Nat. Chem. 2010, 2, 87. https://doi.org/10.1038/nchem.517
  4. Kang, J.; Kim, S.; Kwon, Y. Toxicol. Env. Health. Sci. 2010, 1, 145.
  5. Sarker, D. K. Curr. Drug. Discov. Technol. 2009, 6, 52. https://doi.org/10.2174/157016309787581039
  6. Ai, H.; Jones, S. A.; Lvov, Y. M. Cell Biochem. Biophys. 2003, 39, 23. https://doi.org/10.1385/CBB:39:1:23
  7. Gawalt, E. S.; Mrksich, M. J. Am. Chem. Soc. 2004, 126, 15613. https://doi.org/10.1021/ja048978+
  8. Kwon, Y.; Mrksich, M. J. Am. Chem. Soc. 2002, 124, 806. https://doi.org/10.1021/ja010740n
  9. Yousaf, M. N.; Chan, E. W.; Mrksch, M. Angew Chem. Int. Ed. Engl. 2000, 39, 1943. https://doi.org/10.1002/1521-3773(20000602)39:11<1943::AID-ANIE1943>3.0.CO;2-#
  10. Kong, B.; Kim, Y.; Choi, I. S. Bull. Korean Chem. Soc. 2008, 29, 1843. https://doi.org/10.5012/bkcs.2008.29.9.1843
  11. Lee, J. M.; Park, H. K.; Jung, Y.; Kim, J. K.; Jung, S. O.; Chung, B. H. Anal. Chem. 2007, 79, 2680. https://doi.org/10.1021/ac0619231
  12. Hudalla, G. A.; Merphy, W. L. Langmuir 2009, 19, 5737.
  13. Park, S.; Yousaf, M. N. Langmuir 2008, 24, 6201. https://doi.org/10.1021/la8005663
  14. Byun, E.; Kim, J.; Kang, S. M.; Lee, H.; Bang, D.; Lee, H. Bioconjugate Chem. 2011, 22, 4. https://doi.org/10.1021/bc100285p
  15. Imabayashi, S.; Gon, N.; Sasaki, T.; Hobara, D.; Kakiuchi, T. Langmuir 1998, 14, 2348. https://doi.org/10.1021/la971377u
  16. Ichii, T.; Fukuma, T.; Kobayashi, K.; Yamada, H.; Matsushige, K. Appl. Surf. Sci. 2003, 210, 99. https://doi.org/10.1016/S0169-4332(02)01487-3
  17. Diao, P.; Guo, M.; Hou, Q. C.; Xiang, M.; Zhang, Q. J. Phys. Chem. B 2006, 41, 20386.
  18. Imabayashi, S.; Gon, N.; Sasaki, T.; Hobara, D.; Kakiuchi, T. Langmuir 1998, 14, 2348. https://doi.org/10.1021/la971377u
  19. Byloos, M.; Al-Maznai, H.; Morin, M. J. Phys. Chem. B 2001, 105, 5900. https://doi.org/10.1021/jp003066p
  20. Hobara, D.; Sasaki, T.; Imabayashi, S.; Kakiuchi, T. Langmuir 1999, 15, 5073. https://doi.org/10.1021/la981631y
  21. Ichii, T.; Fukuma, T.; Kobayashi, K.; Yamada H.; Matsushige, K. Appl. Surf. Sci. 2003, 210, 99. https://doi.org/10.1016/S0169-4332(02)01487-3
  22. Ito, E.; Hara, M.; Kanai, K.; Ouchi, Y.; Seki, K.; Noh, J. Bull. Korean Chem. Soc. 2009, 30, 1755. https://doi.org/10.5012/bkcs.2009.30.8.1755
  23. Noh, J.; Park, H.; Jeong, Y.; Kwon, S. Bull. Korean Chem. Soc. 2006, 27, 403. https://doi.org/10.5012/bkcs.2006.27.3.403
  24. Fan, F. Q.; Maldarelli, C.; Couzis, A. Langmuir 2003, 19, 3254. https://doi.org/10.1021/la026453u
  25. Hobara, D.; Kakiuchi, T. Electrochem. Comm. 2001, 3, 154. https://doi.org/10.1016/S1388-2481(01)00127-8
  26. Phong, P. H.; Tomono, H.; Nishi, N.; Yamamoto, M.; Kakiuchi, T. Electrochim. Acta 2008, 53, 4900. https://doi.org/10.1016/j.electacta.2008.01.038
  27. Carot, M. L.; Macagno, V. A.; Paredes-Olivera, P.; Patrito, E. M. J. Phys. Chem. C 2007, 111, 4294. https://doi.org/10.1021/jp066513v
  28. Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M.; Deutch, J. J. Phys. Chem. 1994, 98, 563. https://doi.org/10.1021/j100053a035
  29. Fan, F. Q.; Maldarelli, C.; Couzis, A. Langmuir 2003, 19, 3254. https://doi.org/10.1021/la026453u
  30. Ichii, T.; Fukuma, T.; Kobayashi, K.; Yamada, H.; Matsushige, K. Appl. Surf. Sci. 2003, 210, 99. https://doi.org/10.1016/S0169-4332(02)01487-3