DOI QR코드

DOI QR Code

New Unsymmetric Dinuclear Copper(II) Complexes of Trans-disubstituted Cyclam Derivatives: Spectral, Electrochemical, Magnetic, Catalytic, Antimicrobial, DNA Binding and Cleavage Studies

  • Prabu, R. (Department of Inorganic Chemistry, School of Chemical Sciences, University of Madras) ;
  • Vijayaraj, A. (Department of Inorganic Chemistry, School of Chemical Sciences, University of Madras) ;
  • Suresh, R. (Department of Inorganic Chemistry, School of Chemical Sciences, University of Madras) ;
  • Jagadish, L. (Centre for Advanced Studies in Botany, University of Madras) ;
  • Kaviyarasan, V. (Centre for Advanced Studies in Botany, University of Madras) ;
  • Narayanan, V. (Department of Inorganic Chemistry, School of Chemical Sciences, University of Madras)
  • Received : 2011.01.28
  • Accepted : 2011.03.30
  • Published : 2011.05.20

Abstract

Six new binuclear copper(II) complexes have been prepared by template condensation of the dialdehydes 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-a) and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-b) with appropriate aliphatic diamines, and copper(II) perchlorate. The structural features of the complexes have been confirmed by elemental analysis, IR, UV-vis and mass spectra etc. The electrochemical behavior of all the copper(II) complexes show two irreversible one electron reduction process. The room temperature magnetic moment studies depict the presence of an antiferromagnetic interaction in the binuclear complexes. The catechol oxidation and hydrolysis of 4-nitrophenylphosphate were carried out by using the complexes as catalyst. The antimicrobial screening data show good results. The binding of the complexes to calf thymus DNA (CT DNA) has been investigated with absorption and emission spectroscopy. The complex [$Cu_2L^{1a}$] displays significant cleavage property of circular plasmid pBR322 DNA in to linear form. Spectral, electrochemical, magnetic and catalytic studies support the distortion of the copper ion geometry that arises as the macrocyclic ring size increases.

Keywords

References

  1. Liang, X.; Peter, S. J. Chem. Soc. Rev. 2004, 33, 246. https://doi.org/10.1039/b313659k
  2. Morphy, J. R.; Parker, D.; Kataky, R.; Harrison, A.; Eaton, M. A. W.; Millican, A.; Phipps, A.; Walker, C. Chem. Commun. 1989, 792.
  3. Beley, M.; Collin, J. P.; Ruppert, R.; Sauvage, J. P. J. Am. Chem. Soc. 1986, 108, 7461. https://doi.org/10.1021/ja00284a003
  4. Kimura, E.; Koike, T.; Takahashi, M. Chem. Commun. 1985, 385.
  5. Prabu, R.; Vijayaraj, A.; Suresh, R.; Shenbhagaraman, R.; Kaviyarasan, V.; Narayanan, V. Spectrochim. Acta Part A 2011, 78, 601. https://doi.org/10.1016/j.saa.2010.11.029
  6. Wainwright, K. P. Coord. Chem. Rev. 1997, 16, 635.
  7. Curtis, N. F. J. Chem. Soc. 1964, 2644. https://doi.org/10.1039/jr9640002644
  8. Meyer, M.; Dahaoui-Gindrey, V.; Lecomte, C.; Guilard, L. Coord. Chem. Rev. 1998, 178, 1313. https://doi.org/10.1016/S0010-8545(98)00169-6
  9. Davies, P. J.; Taylor, M. R.; Wainwright, K. P.; Harriott, P.; Duckworth, P. A. Inorg. Chim. Acta 1996, 2461.
  10. Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 6626. https://doi.org/10.1021/ja0258226
  11. Venturini, A.; Gonzalez, J. J. Org. Chem. 2002, 67, 9089. https://doi.org/10.1021/jo026188h
  12. Delpiccolo, C. M. L.; Mata, E. J. Tetrahedron: Asymmetry 2002, 13, 905. https://doi.org/10.1016/S0957-4166(02)00214-8
  13. Karia, F. D.; Parsania, P. H. Asian J. Chem. 1999, 11, 991.
  14. Pandeya, S. N.; Sriram, D.; Nath, G.; De Clercq, E. Il Farmaco 1999, 54, 624. https://doi.org/10.1016/S0014-827X(99)00075-0
  15. El-Masry, A. H.; Fahmy, H. H.; Abdelwahed, S. H. A. Molecules 2000, 5, 1429. https://doi.org/10.3390/51201429
  16. More, P. G.; Bhalvankar, R. B.; Pattar, S. C. J. Indian Chem. Soc. 2001, 78, 474.
  17. Kabeer, A. S.; Baseer, M. A.; Mote, N. A. Asian J. Chem. 2001, 13, 496.
  18. Pathak, P.; Sharma, K. P. Orient. J. Chem. 2000, 16, 161.
  19. Kuzmin, V. E.; Lozitsky, V. P.; Kamalov, G.; Lozitskaya, R. N.; Zheltvay, A. I.; Fedtchouk, A. S.; Kryzhanovsky, D. N. Acta Biochim. Pol. 2000, 47, 867.
  20. Desai, S. B.; Desai, P. B.; Desai, K. R. Hetrocycl. Commun. 2001, 7, 83. https://doi.org/10.1515/HC.2001.7.1.83
  21. Sigel, H. Metal Ions in Biological Systems; Dekker: New York, 1981.
  22. Karlin, K. D.; Tyeklar, Z. Bioinorganic Chemistry of Copper; Kluwer: New York, 1993.
  23. Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Science 1995, 269, 1069. https://doi.org/10.1126/science.7652554
  24. Iwata, S.; Ostermaier, C.; Ludwig, B.; Michel, H. Nature 1995, 376, 660. https://doi.org/10.1038/376660a0
  25. Kronek, P. M. H.; Antholine, W. A.; Riester, J.; Zumft, W. G. FEBS Lett. 1988, 242, 70. https://doi.org/10.1016/0014-5793(88)80987-6
  26. Willett, D., Gatteschi, G., Eds.; Magneto-Structural Correlations in Exchange Coupled Systems; Nato-ASI Series: Reidal, Dordrecht, The Netherlands, 1985.
  27. Kahn, O. Molecular Magnetism; VCH: New York, 1993.
  28. Kahn, O. Inorg. Chim. Acta 1982, 62, 3. https://doi.org/10.1016/S0020-1693(00)88472-8
  29. Fenton, D. E.; Casellato, U.; Vigato, P. A.; Vidali, M. Inorg. Chim. Acta 1982, 62, 57. https://doi.org/10.1016/S0020-1693(00)88478-9
  30. Robson, R.; Hoskins, B. F.; Schaap, H. Inorg. Nucl. Chem. Lett. 1972, 8, 21. https://doi.org/10.1016/0020-1650(72)80078-3
  31. Gaykema, W. P. J.; Volbeda, A.; Hol, W. G. H. J. Mol. Biol. 1985, 187, 2255.
  32. Lerch, K. J.; Huber, M.; Schneider, H. J.; Drexel, R.; Linzen, B. J. Inorg. Biochem. 1986, 26, 213. https://doi.org/10.1016/0162-0134(86)80043-5
  33. Roy, M.; Pathak, B.; Patra, A. K.; Jemmis, E. D.; Nethaji, M.; Chakravarthy, A. R. Inorg. Chem. 2007, 46, 11122. https://doi.org/10.1021/ic701450a
  34. Casiraghi, G.; Giuseppe, G. G.; Puglia, G.; Sartori, G.; Terenghi, G. J. Chem. Soc., Perkin Trans. 1980, 1, 1862.
  35. Wang, Q.; Wilson, C.; Alexander,; Blake, J.; Simon,; Collinson, R.; Peter, A.; Schrodera, M. Tetrahedron Lett. 2006, 47, 8983. https://doi.org/10.1016/j.tetlet.2006.09.149
  36. Royal, G.; Gindrey, V. D.; Dahaowi, S.; Tabard, A.; Guilard, R.;Pullumbi, P.; Lecomte, C. Eur. J. Org. Chem. 1998, 9, 1971.
  37. Gayathri, D.; Velmurugan, D.; Ravikumar, K.; Sreedaran, S.; Narayanan, V. Acta Cystallogr., Sect. E 2006, 62, 3714. https://doi.org/10.1107/S1600536806029874
  38. Sreedaran, S.; Bharathi, K. S.; Rahiman, A. K.; Rajesh, K.; Nirmala, G.; Narayanan, V. J. Coord. Chem. 2008, 61, 3594. https://doi.org/10.1080/00958970802087425
  39. Dede, B.; Ozmen, I.; Karipcin, F. Polyhedron 2009, 28, 3967. https://doi.org/10.1016/j.poly.2009.09.020
  40. Lachkar, M.; Guilard, R.; Attamani, A.; De Clan, A.; Fisher, J.; Weiss, R. Inorg. Chem. 1998, 37, 1575. https://doi.org/10.1021/ic9708327
  41. Adam, K. R.; Andereg, G.; Lindoy, L. F.; Lip, H. C.; Mcpartlin, M.; Rea, J. H.; Smith, R. J.; Tasker, P. J. Inorg. Chem. 1980, 19, 2956. https://doi.org/10.1021/ic50212a023
  42. Srinivas, B.; Arulsamy, N.; Zacharias, P. S. Polyhedron 1991, 10, 731. https://doi.org/10.1016/S0277-5387(00)83761-4
  43. Sacconi, L.; Ciampolini, M.; Spero, G. P. J. Am. Chem. Soc. 1965, 87, 3102. https://doi.org/10.1021/ja01092a016
  44. Wada, H.; Aono, T.; Moodo, K.; Ohba, M.; Makstumoto, N.; Okawa, H. Inorg. Chem. Acta 1996, 246, 13. https://doi.org/10.1016/0020-1693(96)05045-1
  45. Anbu, S.; Kandaswamy, M. Polyhedron 2011, 30, 123. https://doi.org/10.1016/j.poly.2010.09.041
  46. Chen, J. M.; Wei, W.; Feng, X. L.; Lu, T. B. Chem. Asian J. 2007, 2, 710. https://doi.org/10.1002/asia.200700042
  47. Thakurta, S.; Rizzoli, C.; Butcher, J.; García, J. G.; Garribbae, E. U.; Mitra, S. Inorg. Chim. Acta 2010, 363, 1395. https://doi.org/10.1016/j.ica.2009.12.053
  48. Roy, T. G.; Hazari, S. K. S.; Dey, B. K.; Miah, H. A.; Olbrich, F. K.; Rehder, D. Inorg. Chem. 2007, 46, 5372. https://doi.org/10.1021/ic061700t
  49. Xie, Y.; Jiang, H.; Chan, A. S .C.; Liu, Q.; Xu, X.; Du, C.; Zhu, Y. Inorg. Chim. Acta 2002, 333, 133.
  50. Vaidyatham, M.; Viswanathan, R.; Palaniandavar, M.; Balasubramanian, T.; Prabhaharan,P.; Muthiah,T. P. Inorg. Chem. 1998, 37, 6418. https://doi.org/10.1021/ic971567s
  51. Chattopadhyay, T.; Banu, K. S.; Banerjee, A.; Ribas, J.; Majee, A.; Nethaji, M.; Das, D. J. Mol. Struc. 2007, 833, 13. https://doi.org/10.1016/j.molstruc.2006.08.024
  52. Bleany, B.; Bowers, K. D. R. Prog. Soc., London Ser. A 1952, 214, 415.
  53. Thompson, K. L.; Mandal, S. K.; Tandon, S .S.; Bridson, J. N.; Park, M. K. Inorg. Chem. 1996, 35, 3117. https://doi.org/10.1021/ic9514197
  54. Geary, J. Coord. Chem. Rev. 1971, 7, 81. https://doi.org/10.1016/S0010-8545(00)80009-0
  55. Fraser, C.; Bosnich, B. Inorg. Chem. 2002, 41, 1788. https://doi.org/10.1021/ic010708u
  56. Krishnapriya, K. R.; Kandaswamy, M. Polyhedron 2005, 24, 113. https://doi.org/10.1016/j.poly.2004.10.010
  57. Boghaei, D.; Behzad, M.; Bezaatpour, A. J. Mol. Cat. A 2005, 2, 1.
  58. Sreenivasulu, B.; Vetrichelvan, M.; Zhao, F.; Gao, S.; Vittal, J. J. Eur. J. Inorg. Chem. 2005, 4635.
  59. Mahalakshmy, R.; Venkatesan, R.; Sambasiva Rao, P. S.; Kannappan, R.; Rajendiran, T. M. Trans. Met. Chem. 2004, 29, 623. https://doi.org/10.1007/s11243-004-2793-9
  60. Bharathi, K. S.; Rahiman, A. K.; Rajesh, K.; Sreedaran, S.; Aravindan, P. G.; Velmurugan, D.; Narayanan, V. Polyhedron 2006, 25, 2859. https://doi.org/10.1016/j.poly.2006.04.022
  61. Roy, T. G.; Hazari, S. K. S.; Dey, B. K.; Miah, H. A.; Bader, C.; Rehder, D. Eur. J. Inorg. Chem. 2004, 4115-4123.
  62. Wolfe, A.; Shimer, G. H.; Mechan, T. Biochemistry 1987, 26, 6392. https://doi.org/10.1021/bi00394a013
  63. Peng, B.; Chao, H.; Sun, B.; Li, H.; Gao, F.; Ji, L. N. J. Inorg. Biochem. 2006, 100, 1487. https://doi.org/10.1016/j.jinorgbio.2006.04.008
  64. Lee, M.; Rhodes, A. L.; Wyatt, M. D.; Forrow, S.; Hartley, J. A. Biochemistry 1993, 32, 4237. https://doi.org/10.1021/bi00067a011
  65. Qian, W.; Gu, F.; Gao, L.; Feng, S.; Yan, D.; Liao, D.; Cheng, P. Dalton Trans. 2007, 1060.
  66. Grover, N.; Gupta, N.; Singh, P.; Thorp, H. H. Inorg. Chem. 1992, 31, 2014. https://doi.org/10.1021/ic00037a008
  67. Li, Q. L.; Huang, J.; Wang, Q.; Jiang, N.; Xia, C. Q.; Lin, H. H.; Wu, J.; Yu, H. Q. Bioorg. Med. Chem. 2006, 14, 4151. https://doi.org/10.1016/j.bmc.2006.01.069

Cited by

  1. Coordination Polymers Derived from a Bis(pyrazolecarboxylate) Ligand by Solvothermal C-H Bond Activation: Synthesis, Structures, Catalysis, and Magnetic Properties vol.2014, pp.34, 2014, https://doi.org/10.1002/ejic.201402642
  2. Synthesis of New Acyclic Schiff Base Oxovanadium(IV) Complexes and Their Electrochemical, Catecholase, and Antimicrobial Studies of Minimum Inhibitory Concentration vol.45, pp.11, 2015, https://doi.org/10.1080/15533174.2015.1031040
  3. ) complex of a compartmental Mannich-base ligand: synthesis, characterization, bio-relevant catalytic promiscuity and magnetic study vol.5, pp.63, 2015, https://doi.org/10.1039/C5RA05776K
  4. Spectral, Electrochemical, Fluorescence, Kinetic and Anti-microbial Studies of Acyclic Schiff-base Gadolinium(III) Complexes vol.33, pp.11, 2011, https://doi.org/10.5012/bkcs.2012.33.11.3581
  5. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid–base and coordination properties vol.42, pp.7, 2011, https://doi.org/10.1039/c2dt32045b