DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Received : 2011.03.03
  • Accepted : 2011.03.28
  • Published : 2011.05.20

Abstract

Kinetic studies of the reactions of O,O-diphenyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at 55.0 $^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Bronsted [log $k_2$ vs $pK_a(X)$] plots for substituent X variations in the nucleophiles are biphasic concave downwards with a maximum point at X = H, and the unusual positive ${\rho}_X$ and negative ${\beta}_X$ values are obtained for the strongly basic benzylamines. The sign of the cross-interaction constant (${\rho}_{XZ}$) is negative for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ value is observed with the weakly basic nucleophiles (${\rho}_{XZ}$ = -2.35) compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = -0.03). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a concerted $S_N2$ involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles. The unusual positive ${\rho}_X$ and negative ${\beta}_X$ values with the strongly basic benzylamines are rationalized by through-space interaction between the ${\pi}$-clouds of the electron-rich phenyl ring of benzylamine and the phenyl ring of the leaving group thiophenoxide.

Keywords

References

  1. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  2. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  3. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  4. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  5. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  6. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  7. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  8. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  9. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  10. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  11. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b904948g
  12. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  13. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  14. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  15. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. https://doi.org/10.1021/jo0162742
  16. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  17. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  18. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851. https://doi.org/10.5012/bkcs.2008.29.4.851
  19. Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769. https://doi.org/10.5012/bkcs.2008.29.9.1769
  20. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  21. Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
  22. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709. https://doi.org/10.5012/bkcs.2011.32.2.709
  23. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. DOI 10.1002/ poc.1788.
  24. Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1138. https://doi.org/10.5012/bkcs.2011.32.4.1138
  25. Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375. https://doi.org/10.5012/bkcs.2011.32.4.1375
  26. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  27. Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889. https://doi.org/10.5012/bkcs.2011.32.3.889
  28. Coetzee, J. F.; Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005. https://doi.org/10.1021/ja00950a006
  29. Kolthoff, I. M.; Chantooni, Jr., M. K.; Bhowmik, S. J. Am. Chem. Soc. 1968, 90, 23. https://doi.org/10.1021/ja01003a005
  30. Bordwell, F. G. Acc. Chem. Res. 1988, 21, 556.
  31. Crampton, M. R.; Robotham, I. A. J. Chem. Res. (S) 1997, 22.
  32. Cook, A. G.; Mason, G. W. J. Inorg. Nucl. Chem. 1966, 28, 2579. https://doi.org/10.1016/0022-1902(66)80382-2
  33. Spillane, W. J.; Hogan, G.; McHugh, F. A.; Burke, P. O. J. Chem. Soc., Perkin Trans. 2 1998, 13.
  34. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  35. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  36. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  37. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. New J. Chem. 2000, 24, 213. https://doi.org/10.1039/a909541a
  38. Koh, H. J.; Shin, C. H.; Lee, H. W.; Lee, I. J. Chem., Soc., Perkin Trans. 2 1998, 1329.
  39. Koh, H. J.; Lee, J. W.; Lee, H. W.; Lee, I. New J. Chem. 1997, 21, 447.
  40. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1418.
  41. Koh, H. J.; Lee, H. W.; Lee, I. J. Chem., Soc., Perkin Trans. 2 1994, 125.
  42. Lee, I.; Kim, H. Y.; Kang, H. K.; Lee, H. W. J. Org. Chem. 1988, 53, 2678. https://doi.org/10.1021/jo00247a004
  43. Lee, I.; Choi, Y. H.; Lee, H. W. J. Chem. Soc., Perkin Trans 2 1988, 1537.
  44. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  45. Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  46. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
  47. Melander, L., Jr.; Saunders, W. H. Reaction Rates of Isotopic Molecules; Wiley-Interscience: New York, 1980.
  48. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  49. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 137. https://doi.org/10.5012/bkcs.2011.32.1.137
  50. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285. https://doi.org/10.1021/jo0484676
  51. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150. https://doi.org/10.1021/jo049845+
  52. Oh, H. K.; Lee, J. Y.; Lee, H. W.; Lee, I. New J. Chem. 2002, 26, 473. https://doi.org/10.1039/b107403m
  53. Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 383.
  54. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313. https://doi.org/10.1039/b006974o
  55. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem., Soc., Perkin Trans. 2 2000, 2306.
  56. Oh, H. K.; Yang, J. H.; Cho, I. H.; Lee, H. W.; Lee, I. Int. J. Chem. Kinet. 2000, 32, 485. https://doi.org/10.1002/1097-4601(2000)32:8<485::AID-KIN6>3.0.CO;2-X
  57. Oh, H. K.; Lee, Y. H.; Lee, I. Int. J. Chem. Kinet. 2000, 32, 131. https://doi.org/10.1002/(SICI)1097-4601(2000)32:3<131::AID-KIN2>3.0.CO;2-C
  58. Oh, H. K.; Kim, S. K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1017.
  59. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 849. https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<849::AID-KIN7>3.0.CO;2-V
  60. Oh, H. K.; Lee, J. Y.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 1198.
  61. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  62. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem., Soc., Perkin Trans. 2 2001, 1753.
  63. Oh, H. K.; Lee, J. Y.; Yun, J. H.; Park, Y. S.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 419. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  3. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  4. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  5. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  6. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3947
  7. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  8. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4304
  9. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2306
  10. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  11. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  12. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3355
  13. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  14. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  15. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1055