DOI QR코드

DOI QR Code

The Preparation of Alumina Particles Wrapped in Few-layer Graphene Sheets and Their Application to Dye-sensitized Solar Cells

  • Ahn, Kwang-Soon (School of Chemical Engineering, College of Engineering, Yeungnam University) ;
  • Seo, Sang-Won (School of Chemical Engineering, College of Engineering, Yeungnam University) ;
  • Park, Jeong-Hyun (School of Chemical Engineering, College of Engineering, Yeungnam University) ;
  • Min, Bong-Ki (Center for Research Utilities, Yeungnam University) ;
  • Jung, Woo-Sik (School of Chemical Engineering, College of Engineering, Yeungnam University)
  • Received : 2010.12.02
  • Accepted : 2011.03.21
  • Published : 2011.05.20

Abstract

Alumina particles wrapped in few-layer graphene sheets were prepared by calcining aluminum nitride powders under a mixed gas flow of carbon monoxide and argon. The graphene sheets were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The few-layer graphene sheets, which wrapped around the alumina particles, did not exhibit any diffraction peaks in the XRD patterns but did show three characteristic bands (D, G, and 2D bands) in the Raman spectra. The dye-sensitized solar cell (DSSC) with the alumina particles wrapped in few-layer graphene sheets exhibited significantly improved overall energy-conversion efficiency, compared to conventional DSSC, due to longer electron lifetime.

Keywords

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197. https://doi.org/10.1038/nature04233
  3. Katsnelson, M. I. Materialstoday 2007, 10, 20.
  4. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. https://doi.org/10.1038/nature04969
  5. Gomez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8, 2045. https://doi.org/10.1021/nl801384y
  6. Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. J. Mater. Chem. 2006, 16, 155. https://doi.org/10.1039/b512799h
  7. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. https://doi.org/10.1016/j.carbon.2007.02.034
  8. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. https://doi.org/10.1021/jp710931h
  9. Kudin, K. N.; Ozbas, B.; Schiepp, H. C.; Pruïhomme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36. https://doi.org/10.1021/nl071822y
  10. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; De Heer, W. A. J. Phys. Chem. B 2004, 108, 19912. https://doi.org/10.1021/jp040650f
  11. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Science 2006, 313, 951. https://doi.org/10.1126/science.1130681
  12. Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Appl. Phys. Lett. 2004, 85, 1265. https://doi.org/10.1063/1.1782253
  13. Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Nano Lett. 2008, 8, 2012. https://doi.org/10.1021/nl8011566
  14. Kim, C.-D.; Min, B.-K.; Jung, W.-S. Carbon 2009, 47, 1610. https://doi.org/10.1016/j.carbon.2009.02.025
  15. Yoon, I.; Kim, C.-D.; Min, B.-K.; Kim, Y.-K.; Kim, B.; Jung, W.- S. Bull. Korean Chem. Soc. 2009, 30, 3045. https://doi.org/10.5012/bkcs.2009.30.12.3045
  16. Selvadruray, G.; Sheet, L. Mater. Sci. Technol. 1993, 9, 463. https://doi.org/10.1179/mst.1993.9.6.463
  17. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  18. Kang, S.-H.; Choi, S.-H.; Kang, M.-S.; Kim, J.-Y.; Kim, H.-S.; Hyeon, T.; Sung, Y.-E. Adv. Mater. 2008, 20, 54. https://doi.org/10.1002/adma.200701819
  19. Ahn, K.-S.; Kang, M.-S.; Lee, J.-K.; Shin, B.-C.; Lee, J.-W. Appl. Phys. Lett. 2006, 89, 013103. https://doi.org/10.1063/1.2218831
  20. Archer, M. D.; Nozik, A. J. Nanostructured and Photoelectro- Chemical Systems for Solar Photon Conversion; Imperial College Press: Singapore, 2008.
  21. Sun, S.; Gao, L.; Liu, Y. Appl. Phys. Lett. 2010, 96, 083113. https://doi.org/10.1063/1.3318466
  22. Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. ACS Nano 2010, 4, 887. https://doi.org/10.1021/nn901660v
  23. Jung, W.-S. Bull. Korean Chem. Soc. 2009, 30, 1563. https://doi.org/10.5012/bkcs.2009.30.7.1563
  24. Joo, H. Y.; Jung, W.-S. J. Mater. Proc. Technol. 2008, 204, 498. https://doi.org/10.1016/j.jmatprotec.2008.01.028
  25. Ferrari, A. C. Solid State Commun. 2007, 143, 47. https://doi.org/10.1016/j.ssc.2007.03.052
  26. Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Appl. Phys. Lett. 2004, 85, 1265. https://doi.org/10.1063/1.1782253
  27. Dato, A.; Radmilovic, V.; Lee, Z.; Phillips. J.; Frenklach, M. Nano Lett. 2008, 8, 2012. https://doi.org/10.1021/nl8011566
  28. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. https://doi.org/10.1021/jp710931h
  29. Pimenta, M. A.; Dresselhaus , G.; Dresselhaus, M. S.; Cançado, L. G.; Jori, A.; Saito, R. Phys. Chem. Chem. Phys. 2007, 9, 1276. https://doi.org/10.1039/b613962k
  30. Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y. H.; Chen, W.; Wee, A. T. S. J. Phys. Chem. C 2008, 112, 10637. https://doi.org/10.1021/jp8008404
  31. Chu, P. K.; Li, L. Mater. Chem. Phys. 2006, 96, 253. https://doi.org/10.1016/j.matchemphys.2005.07.048
  32. Park, J.-H.; Seo, S.-W.; Kim, J.-H.; Choi, C.-J.; Kim, H.-S.; Lee, D. K.; Jung, W.-S.; Ahn, K.-S. Mol. Cryst. Liq. Cryst. 2011, in press.

Cited by

  1. Use of melamine in the nitridation of aluminum oxide to aluminum nitride vol.119, pp.1396, 2011, https://doi.org/10.2109/jcersj2.119.968
  2. Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.209
  3. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays vol.7, pp.47, 2015, https://doi.org/10.1039/C5NR04810A
  4. Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance vol.1, pp.39, 2011, https://doi.org/10.1039/c3ta12329d