DOI QR코드

DOI QR Code

Non-Essential Activation of Co2+ and Zn2+ on Mushroom Tyrosinase: Kinetic and Structural Stability

  • Gheibi, N. (Cellular and Molecular Research Center and Department of Biophysics, Qazvin University of Medical Sciences) ;
  • Saboury, A.A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Sarreshtehdari, M. (Department of Internal Medicine, School of Medicine, Qazvin University of Medical Sciences)
  • Received : 2010.11.08
  • Accepted : 2011.03.03
  • Published : 2011.05.20

Abstract

Tyrosinase is a widespread enzyme with great promising capabilities. The Lineweaver-Burk plots of the catecholase reactions showed that the kinetics of mushroom tyrosinase (MT), activated by $Co^{2+}$ and $Zn^{2+}$ at different pHs (6, 7, 8 and 9) obeyed the non-essential activation mode. The binding of metal ions to the enzyme increases the maximum velocity of the enzyme due to an increase in the enzyme catalytic constant ($k_{cat}$). From the kinetic analysis, dissociation constants of the activator from the enzyme-metal ion complex ($K_a$) were obtained as $5{\times}10^4M^{-1}$ and $8.33{\times}10^3M^{-1}$ for $Co^{2+}$ and $Zn^{2+}$ at pH 9 and 6 respectively. The structural analysis of MT through circular dichroism (CD) and intensive fluorescence spectra revealed that the conformational stability of the enzyme in these pHs reaches its maximum value in the presence of each of the two metal ions.

Keywords

References

  1. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563.
  2. Raper, H. S. Physiol. Rev. 1928, 8, 245. https://doi.org/10.1152/physrev.1928.8.2.245
  3. Mason, H. S. J. Biol. Chem. 1948, 172, 83.
  4. Rios, M.; Habecker, B.; Sasaoka, T.; Eisenhofer Rios, G.; Tian, H.; Landis, S.; Chikaraishi, D.; Roffler-Tarlov, S. J. Neurosci. 1999, 19, 3519. https://doi.org/10.1523/JNEUROSCI.19-09-03519.1999
  5. Strack, D.; Schliemann, W. Angew. Chem. Int. Ed. 2001, 40, 3791. https://doi.org/10.1002/1521-3773(20011015)40:20<3791::AID-ANIE3791>3.0.CO;2-T
  6. Eisenhofer, G.; Tian, H.; Holmes, C.; Matsunaga, J.; Roffler-Tarlov, S.; Hearing, V. J. FASEB J. 2003, 17, 1248. https://doi.org/10.1096/fj.02-0736com
  7. Lerch, K. Life Chem. Rep. 1987, 5, 221.
  8. Seo, S.; Sharma, V. K.; Sharma, N. J. Agric. Food. Chem. 2003, 51, 2837. https://doi.org/10.1021/jf020826f
  9. Palumbo, A.; Misuraca, G.; D'Ischia, M.; Prota, G. Biochem. J. 1985, 228, 647. https://doi.org/10.1042/bj2280647
  10. Cicero, R.; Gallone, A.; Maida, I.; Pintucci, G. Comp. Biochem. Physiol. 1990, 96, 393.
  11. Young, G.; Leone, C.; Strothkamp, K. G. Biochemistry 1990, 29, 9684. https://doi.org/10.1021/bi00493a025
  12. Van Gelder, C. W. G.; Flurkey, W. H.; Wichers, H. J. Phytochemistry 1997, 45, 1309. https://doi.org/10.1016/S0031-9422(97)00186-6
  13. Gheibi, N.; Saboury, A. A.; Haghbeen, K. Bull. Korean Chem. Soc. 2006, 27, 642. https://doi.org/10.5012/bkcs.2006.27.5.642
  14. Gheibi, N.; Saboury, A. A.; Mansuri-Torshizi, H.; Haghbeen, K.; Moosavi-Movahedi, A. A. J. Enz. Inhib. and Med. Chem. 2005, 20, 393. https://doi.org/10.1080/14756360500179903
  15. Gheibi, N.; Saboury, A. A.; Haghbeen, K.; Moosavi-Movahedi, A. A. Colloids and Surfaces B: Biointerfaces 2005, 45, 104. https://doi.org/10.1016/j.colsurfb.2005.08.001
  16. Gheibi, N.; Saboury, A. A.; Haghbeen, K.; Moosavi-Movahedi, A. A. J. Bioscience 2006, 31(3), 355. https://doi.org/10.1007/BF02704108
  17. Gheibi, N.; Saboury, A. A. J. Enz. Inhib. and Med. Chem. 2005, 24, 1076.
  18. Linder, M. C. In Biochemistry of Copper; Plenum: New York, 1991.
  19. Lee, Y.; Won, H.; Lee, M.; Lee, B. FEBS Letters 2002, 522, 135. https://doi.org/10.1016/S0014-5793(02)02919-8
  20. Takahashi, K.; Akaishi, E.; Yumiko, A.; Ishikawa, R.; Tanaka, S.; Hosaka, K.; Kubohara, Y. Biochem. Biophys. Res. Comm. 2003, 307, 64. https://doi.org/10.1016/S0006-291X(03)01122-7
  21. Li, S.; Nakagawa, A.; Tsukihara, T. Biochem. Biophys. Res. Comm. 2003, 324, 529.
  22. Buzadzic, B.; Korac, B.; Lazic, T.; Obradovic, D. Food Res. Inter. 2002, 35, 217. https://doi.org/10.1016/S0963-9969(01)00187-9
  23. Palumbo, A.; d'Ischia, M.; Misuraca, G.; Prota, G. Biochim. Biophys. Acta 1987, 925, 203. https://doi.org/10.1016/0304-4165(87)90110-3
  24. Palumbo, A.; d'Ischia, M.; Misuraca, G.; Prota, G.; Schultz, T. M. Biochim. Biophys. Acta 1998, 964, 193.
  25. Jara, J. R.; Solano, F.; Garcia-Borron, J. C.; Aroca, P.; Lozano, J. A. Biochim. Biophys. Acta 1990, 1035, 276. https://doi.org/10.1016/0304-4165(90)90089-F
  26. Ancans, J.; Tobin, D. J.; Hoogduijn, M. J.; Smit, N. P.; Wakamatsu, K.; Thody, A. J. Exp. Cell Res. 2001, 268, 26. https://doi.org/10.1006/excr.2001.5251
  27. Saboury, A. A. J. Iran. Chem. Soc. 2009, 6, 219. https://doi.org/10.1007/BF03245829
  28. Han, H. Y.; Zou, H. C.; Jeon, J. Y.; Wang, Y. J.; Xu, W. A.; Yang, J. M.; Park, Y. D. Biochimica et Biophysica Acta 2007, 1774, 822. https://doi.org/10.1016/j.bbapap.2007.04.011
  29. Park, Y. D.; Kim, S. Y.; Lyou, Y. J.; Lee, J. Y.; Yang, J. M. Biochimie 2005, 87, 931. https://doi.org/10.1016/j.biochi.2005.06.006
  30. Beltramini, M.; Lerch, K. Biochem. J. 1982, 205, 173. https://doi.org/10.1042/bj2050173
  31. Longworth, J. W. In Excited States of Proteins and Nucleic Acids; Steiner, R. F., Weinryb, I., Eds.; Plenum Press: New York, 1971; 319.
  32. Flesch, P. Proc. Soc. Exp. Biol. Med. 1949, 70, 79. https://doi.org/10.3181/00379727-70-16831
  33. Bowness, J. M.; Morton, R. A. Biochem. J. 1953, 53, 620. https://doi.org/10.1042/bj0530620
  34. Bowness, J. M.; Morton, R. A.; Shakir, M. H.; Stubbs, A. L. Biochem. J. 1952, 51, 521. https://doi.org/10.1042/bj0510521
  35. Dorea, J. G.; Pereira, S. E. J. Nut. 1983, 113, 2375. https://doi.org/10.1093/jn/113.11.2375
  36. Molokhia, M. M.; Portnoy, B. Br. J. Dermatol. 1973, 88, 347.
  37. Horcicko, J.; Borovansky, J.; Duchon, J.; Prochazkova, B.; Hoppe-Seyler's, Z. Physiol. Chem. 1983, 354, 203.
  38. Tepper, A. W.; Bubacco, L.; Canters, G. W. J. Biol. Chem. 2002, 277, 30436. https://doi.org/10.1074/jbc.M202461200
  39. Bubacco, L.; Salgado, J.; Tepper, A. W.; Vijgenboom, E.; Canters, G. W. FEBS Lett. 1999, 442, 215. https://doi.org/10.1016/S0014-5793(98)01662-7
  40. Park, Y. D.; Lee, J. R.; Park, K. H.; Hahn, H. S.; Hahn, M. J.; Yang, J. M. J. Protein Chem. 2003, 22, 473. https://doi.org/10.1023/B:JOPC.0000005463.21302.cd
  41. Solano, F.; Jimenez-Cervantes, C.; Martinez-Liarte, J. H.; Garcia- Borron, J. C.; Jara, J. R.; Lozano, J. A. Biochem. J. 1996, 313, 447. https://doi.org/10.1042/bj3130447
  42. Vallee, B. L.; Auld, D. S. Biochemistry 1990, 29, 5647. https://doi.org/10.1021/bi00476a001
  43. Williams, R. P. J. Polyhedron 1987, 6, 61. https://doi.org/10.1016/S0277-5387(00)81239-5
  44. Lindskog, S.; Henderson, L. E.; Kannen, K. K.; Liljas, A.; Nyman, P. O.; Stranberg, B. Enzymes 1971, 5, 587. https://doi.org/10.1016/S1874-6047(08)60104-3
  45. Frausto da Silva J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements; The Inorganic Chemistry of the Life; Clarendon Press: Oxford, 1991.
  46. Gajda, T.; Henry, B.; Delpuech, J. J. J. Chem. Soc. Dalton Trans 1992, 2313.
  47. Gajda, T.; Henry, B.; Delpuech, J. J. J. Chem. Soc. Dalton Trans. 1993, 1301.
  48. Gajda, T.; Henry, B.; Delpuech, J. J. J. Inorg. Chem. 1995, 34, 2455. https://doi.org/10.1021/ic00113a029
  49. Pfiffner, E.; Dietler, C.; Lerch, K. In Comparative Study and Recent Knowledge on Quaternary Structure and Active Sites of Oxygen Carriers and Related Proteins; Tours, France, Marcel Dekker: New York, 1980.
  50. Dietler, C.; Lerch, K. In Proceedings ofthe Third International Symposium on Oxidases and Related Redox Systems; Mason, H. S., King, T., Morrison, M., Eds.; Academic Press: New York 1979.
  51. Lerch, K. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 3635. https://doi.org/10.1073/pnas.75.8.3635
  52. Ruegg, C.; Lerch, K. Biochemistry 1981, 20, 1256. https://doi.org/10.1021/bi00508a032

Cited by

  1. Enzyme Modification and Oxidative Cross‐linking Using Carboxylate‐, Phenol‐ and Catechol‐Conjugated 1,8‐Naphthalimides vol.95, pp.5, 2011, https://doi.org/10.1111/php.13110