DOI QR코드

DOI QR Code

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung (Korea Center for Artificial Photosynthesis, Center for Nano Materials, and Department of Chemistry, Sogang University) ;
  • Pham, Tung Thanh (Korea Center for Artificial Photosynthesis, Center for Nano Materials, and Department of Chemistry, Sogang University) ;
  • Yoon, Kyung-Byung (Korea Center for Artificial Photosynthesis, Center for Nano Materials, and Department of Chemistry, Sogang University)
  • Received : 2011.03.01
  • Accepted : 2011.04.19
  • Published : 2011.05.20

Abstract

Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.

Keywords

References

  1. Nalwa, H. S., Myata, S., Eds.; Nonlinear Optics of Organic Molecules and Polymers; CRC: Florida, 1997.
  2. Gunter, P., Ed.; Nonlinear Optical Effects and Materials; Springer: Heidelberg, 2000.
  3. Eaton, D. F.; Anderson, A. G.; Tam, W.; Wang, Y. J. Am. Chem. Soc. 1987, 109, 1886-1888. https://doi.org/10.1021/ja00240a063
  4. Tom, W.; Eaton, D. F.; Calabrese, J. C.; Williams, I. D.; Wang, Y.; Anderson, A. G. Chem. Mater. 1989, 1, 128-140. https://doi.org/10.1021/cm00001a025
  5. Wang, Y.; Eaton, D. F. Chem. Phys. Lett. 1985, 120, 441-444. https://doi.org/10.1016/0009-2614(85)85637-2
  6. Tomaru, S.; Zembutsu, S.; Kawachi, M.; Kobayashi, M. Chem. Commun. 1984, 1207-1208.
  7. Weissbuch, I.; Lahav, M.; Leiserowitz, L.; Meredith, G. R.; Vanherzeeles, H. Chem. Mater. 1989, 1, 114-118. https://doi.org/10.1021/cm00001a022
  8. Ashwell, G. J.; Hargreaves, R. C.; Baldwin, C. E.; Bahra, G. S.; Brown, C. R. Nature 1992, 357, 393-395. https://doi.org/10.1038/357393a0
  9. Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson, W. L.; Chidsey, C. E. D. Science 1991, 254, 1485-1487. https://doi.org/10.1126/science.254.5037.1485
  10. Kanis, D. R.; Ratner, M. R.; Marks, T. J. Chem. Rev. 1994, 94, 195-242. https://doi.org/10.1021/cr00025a007
  11. Marks, T. J.; Pagani, G. A.; Facchetti, A.; Abbotto, A.; Beverina, L.; Boom, M. E.; Dutta, P.; Evmenenko, G. Chem. Mater. 2003, 15, 1064-1072. https://doi.org/10.1021/cm020929d
  12. Wang, G.; Zhu, P.; Marks, T. J.; Ketterson, J. B. Appl. Phys. Lett. 2002, 16, 2169-2171.
  13. Milko, E.; Boom, M. E.; Evmenenko, G.; Marks, T. J. Adv. Funct. Mater. 2001, 11, 393- 397. https://doi.org/10.1002/1616-3028(200110)11:5<393::AID-ADFM393>3.0.CO;2-S
  14. Zhao, Y. G.; Wu, A.; Lu, H. L.; Chang, S.; Lu, W. K.; Ho, S. T. Appl. Phys. Lett. 2001, 79, 587-589. https://doi.org/10.1063/1.1389514
  15. Facchetti, A.; Abbotto, A.; Beverina, L.; Boom, M. E.; Dutta, P.; Evmenenko, G.; Marks, T. J.; Pagani, G. A. Chem. Mater. 2002, 14, 4996-5005. https://doi.org/10.1021/cm0205635
  16. Wostyn, K.; Binnemans, K.; Clays, K.; Persoons, A. J. Phys. Chem. 2001, 105, 5169-5173. https://doi.org/10.1021/jp0100607
  17. Benard, S.; Yu, P.; Audiere, J. P.; Riviere, E.; Clement, R.; Guilhem, J.; Tchertanov, L.; Nakatani, K. J. Am. Chem. Soc. 2000, 122, 9444-9454. https://doi.org/10.1021/ja0002619
  18. Schwartz, H.; Mazor, M.; Khodorkovsky, V.; Shapiro, L.; Klung, J. T.; Kovalev, E.; Meshulam, G.; Berkovic, G.; Kotler, Z.; Efrima, S. J. Phys. Chem. B 2001, 105, 5914-5921. https://doi.org/10.1021/jp0038916
  19. Lin, S.; Meech, S. R. Langmuir 2000, 16, 2893-2898. https://doi.org/10.1021/la990932k
  20. Yang, X.; Mcbranch, D.; Swanson, B.; Li, D. Angew. Chem. Int. Ed. 1996, 35, 538-560. https://doi.org/10.1002/anie.199605381
  21. Huang, W.; Helvenston, M. Langmuir 1999, 15, 6510-6514. https://doi.org/10.1021/la990237c
  22. Dalton, L. R.; Harper, A. W.; Ghosn, R.; Steier, W. H.; Ziari, M.; Fetterman, H.; Shi, Y.; Mustacich, R. V.; Jen, A. K.-Y.; Shea, K. J. Chem. Mater. 1995, 7, 1060-1081. https://doi.org/10.1021/cm00054a006
  23. Marder, S. R.; Klppelen, B.; Alex, K. Y.; Peyghambarian, N. Nature 1997, 388, 845-851. https://doi.org/10.1038/42190
  24. Boom, M. E. Angew. Chem. Int. Ed. 1996, 41, 3363-3366.
  25. Samyn, C.; Verbiest, T.; Persoons, A. Macromol. Rapid Commun. 2000, 21, 1-15 https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<1::AID-MARC1>3.0.CO;2-X
  26. Saadeh, H.; Yu, D.; Wang, M.; Yu, L. P. J. Mater. Chem. 1999, 9, 1865-1873. https://doi.org/10.1039/a901958h
  27. Steire, W. H. Chem. Phys. 1999, 245, 487-506. https://doi.org/10.1016/S0301-0104(99)00042-7
  28. Jiang, H.; Kakkar, A. K. J. Am. Chem. Soc. 1999, 121, 3657- 3665. https://doi.org/10.1021/ja983274j
  29. Dalton, L. R. J. Mater. Chem. 1999, 9, 1905-1920. https://doi.org/10.1039/a902659b
  30. Persoons, A.; Clays, K. Phys. Rev. Lett. 1991, 66, 2980-2983. https://doi.org/10.1103/PhysRevLett.66.2980
  31. Stahelin, M.; Burland, D. M.; Rice, J. E. Chem. Phys. Lett. 1992, 191, 245-250. https://doi.org/10.1016/0009-2614(92)85295-L
  32. Cox, S. D.; Gier, T. E.; Stucky, G. D.; Bierlein, J. J. Am. Chem. Soc. 1988, 110, 2986-2987. https://doi.org/10.1021/ja00217a057
  33. Cox, S. D.; Gier, T. E.; Stucky, G. D. Chem. Mater. 1990, 2, 609-619. https://doi.org/10.1021/cm00011a600
  34. Cox, S. D.; Gier, T. E.; Stucky, G. D.; Bierlein, J. Solid State Ionics 1989, 32, 514-520. https://doi.org/10.1016/0167-2738(89)90263-4
  35. Marlow, F.; Wübbenhorst, M.; Caro, J. Phys. Chem. 1994, 98, 12315-12319. https://doi.org/10.1021/j100098a029
  36. Caro, J.; Marlow, F.; Hoffmann, K.; Kornatowski, J.; Girnus, I.; Noack, M.; Kolsch, P. Progress in Zeolite Microporous Materials 1997, 105, 2171-2178. https://doi.org/10.1016/S0167-2991(97)80687-8
  37. Marlow, F.; Caro, J.; Werner, L.; Kornatowski, J.; Dähne, S. J. Phys Chem. 1993, 97, 11286-11290. https://doi.org/10.1021/j100145a029
  38. Werner, L.; Caro, J.; Finger, G.; Kornatowski, J. Zeolite 1992, 12, 658-663. https://doi.org/10.1016/0144-2449(92)90111-2
  39. Reck, G.; Marlow, F.; Kornatowski, J.; Hill, W.; Caro, J. J. Phys. Chem. 1996, 100, 1698-1704. https://doi.org/10.1021/jp950454w
  40. Kinski, I.; Daniels, P.; Deroche, C.; Marler, B.; Gies, H. Microporous Mesoporous Materials 2002, 56, 11-25. https://doi.org/10.1016/S1387-1811(02)00435-3
  41. Kinski, I.; Gies, H.; Marlow, F. Zeolites 1997, 19, 375-381. https://doi.org/10.1016/S0144-2449(97)00085-7
  42. Kim, H. S.; Lee, S. M.; Ha, K.; Jung, C.; Lee, Y.-J.; Chun, Y. S.; Kim, D.; Rhee, B. K.; Yoon, K. B. J. Am. Chem. Soc. 2004, 126, 673-682. https://doi.org/10.1021/ja037772q
  43. Kim, H. S.; Pham, T. T.; Yoon, K. B. J. Am. Chem. Soc. 2008, 130, 2134-2135. https://doi.org/10.1021/ja0774820
  44. Kim, H. S.; Sohn, K. W.; Jeon, Y.; Min, H.; Kim, D.; Yoon, K. B. Adv. Mater. 2007, 19, 260-263. https://doi.org/10.1002/adma.200602101
  45. Wang, Y. Acc. Chem. Res. 1991, 24, 133-139. https://doi.org/10.1021/ar00005a002
  46. Hu, Y. Z.; Lindberg, M.; Koch, S. W. Phys. Rev. B 1990, 42, 1713- 1723. https://doi.org/10.1103/PhysRevB.42.1713
  47. Guerreiro, P. T.; Ten, S.; Borrelli, N. F.; Butty, J.; Jabbour, G. E.; Peyghambarian, N. Appl. Phys. Lett. 1997, 71, 1595-1597. https://doi.org/10.1063/1.119843
  48. Wang, Y.; Wang, M.; Yao, X.; Kong, F.; Zhang, L. J. Cryst. Growth 2004, 268, 575-579. https://doi.org/10.1016/j.jcrysgro.2004.04.094
  49. Justus, B. L.; Tonucci, R. J.; Berry, A. D. Appl. Phys. Lett. 1992, 61, 3151-3153. https://doi.org/10.1063/1.107991
  50. Dvorak, M. D.; Justus, B. L.; Berry, A. D. Opt. Lett. 1995, 116, 149-152.
  51. Zhu, Y.; Elim, H. I.; Foo, Y.-L.; Yu, T.; Liu, Y.; Ji, W.; Lee, J.-Y.; Shen, Z.; Wee, A. T.-S.; Thong, J. T.-L.; Sow, C.-H. Adv. Mater. 2005, 18, 587-592.
  52. Zhu, Y.; Elim, H. I.; Foo, Y.-L.; Yu, T.; Liu, Y.; Ji, W.; Lee, J.-Y.; Shen, Z.; Wee, A. T.-S.; Thong, J. T.-L.; Sow, C.-H. Adv. Mater. 2005, 18, 587-592.
  53. Yu, B.; Yin, G.; Zhu, C.; Gan, F. Opt. Mater. 1998, 11, 17-21.
  54. Lu, S. W.; Sohling, U.; Mennig, M.; Schmidt, H. Nanotechnology 2002, 13, 669-673. https://doi.org/10.1088/0957-4484/13/5/326
  55. Liu, B.; Li, H. P.; Chew, C. H.; Que, W. X.; Lam, Y. L.; Kam, C. H.; Gan, L. M.; Xu, G. Q. Mater. Lett. 2001, 51, 461-469. https://doi.org/10.1016/S0167-577X(01)00336-6
  56. Huang, W.; Shi, J. J. Mater. Res. 2000, 15, 2343-2346. https://doi.org/10.1557/JMR.2000.0337
  57. Martucci, A.; Fick, J.; Schell, J.; Battaglin, G.; Guglielmi, M. J. Appl. Phys. 1999, 86, 79-87. https://doi.org/10.1063/1.370702
  58. Wang, Y.; Herron, N. J. Phys. Chem. 1987, 91, 257-260. https://doi.org/10.1021/j100286a004
  59. Moller, K.; Eddy, M. M.; Stucky, G. D.; Herron, N.; Bein, T. J. Am. Chem. Soc. 1989, 111, 2564-2571. https://doi.org/10.1021/ja00189a031
  60. Stucky, G. D.; Mac Dougall, J. E. Science 1990, 247, 669-678. https://doi.org/10.1126/science.247.4943.669
  61. Liu, X.; Thomas, J. K. Langmuir 1989, 5, 58-66. https://doi.org/10.1021/la00085a012
  62. Leiggener, C.; Calzaferri, G. Chem. Eur. J. 2005, 11, 7191- 7198. https://doi.org/10.1002/chem.200500495
  63. Leiggener, C.; Calzaferri, G. ChemPhysChem 2004, 5, 1593-1596. https://doi.org/10.1002/cphc.200400355
  64. Terasaki, O.; Yamazaki, K.; Thomas, J. M.; Ohsuna, T.; Watanabe, D.; Sanders, J. V.; Barry, J. C. Nature 1987, 330, 58-60. https://doi.org/10.1038/330058a0
  65. Armand, P.; Saboungi, M.-L.; Price, D.-L.; Iton, L.; Cramer, C.; Grimsditch, M. Phys. Rev. Lett. 1997, 79, 2061-2064. https://doi.org/10.1103/PhysRevLett.79.2061
  66. Ozin, G. A.; Steele, M. R.; Holmes, A. J. Chem. Mater. 1994, 6, 999-1010. https://doi.org/10.1021/cm00043a023
  67. Jeong, N. C.; Kim, H. S.; Yoon, K. B. Langmuir 2005, 21, 6038. https://doi.org/10.1021/la050452v
  68. Jeong, N. C.; Kim, H. S.; Yoon, K. B. J. Phys. Chem. C 2007, 111, 10298-10312. https://doi.org/10.1021/jp070107+
  69. Kim, H. S.; Jeong, N. C.; Yoon, K. B. J. Am. Chem. Soc. 2011, 133, 1642-1645. https://doi.org/10.1021/ja109126w
  70. Kim, H. S.; Lee, M. H.; Jeong, N. C.; Lee, S. M.; Rhee, B. K.; Yoon, K. B. J. Am. Chem. Soc. 2006, 128, 15070-15071. https://doi.org/10.1021/ja0661966
  71. Boyd, R. W. Nonlinear Optics, 2nd ed.; Academic: London, 2003; p 48.
  72. Shen, Y. R. The Principles of Nonlinear Optics; Wiley: New York, 1988; p 101.
  73. Huang, Y.; Cheng, T.; Li, F.; Huang, C.-H.; Hou, T.; Yu, A.; Zhao, X.; Xu, X. J. Phys Chem. B 2002, 106, 10020-10030. https://doi.org/10.1021/jp020876n
  74. Cao, X.; Tolbert, R. W.; Mchale, J. L.; Edwards, W. D. J. Phys Chem. A 1998, 102, 2739-2748. https://doi.org/10.1021/jp972190e
  75. Min, H.; Jeon, Y.; Sung, J. H.; Seok, S.; Kim, D.; Kim, H. S.; Yoon, K. B. J. Phys Chem. C 2007, 111, 18159-18163. https://doi.org/10.1021/jp073178h
  76. Yu, B.; Yin, G.; Zhu, C.; Gan, F. Opt. Mater. 1998, 11, 17-21. https://doi.org/10.1016/S0925-3467(98)00021-4
  77. Justus, B. L.; Tonucci, R. J.; Berry, A. D. Appl. Phys. Lett. 1992, 61, 3151-3153. https://doi.org/10.1063/1.107991
  78. Dvorak, M. D.; Justus, B. L.; Berry, A. D. Opt. Lett. 1995, 116, 149-152.
  79. Martucci, A.; Fick, J.; Schell, J.; Battaglin, G.; Guglielmi, M. J. Appl. Phys. 1999, 86, 79-87. https://doi.org/10.1063/1.370702

Cited by

  1. ChemInform Abstract: Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation vol.42, pp.35, 2011, https://doi.org/10.1002/chin.201135208