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Design of Low-Pass Type Inverter: UWB Band-Pass Filter with Low 
Spurious Characteristics

Young-Ho Cho․Moon-Gyu Choi․Sang-Won Yun 

Abstract

In this paper, we present the design method for a low-pass type inverter, which can effectively suppress the spurious 
response associated with band-pass filters. The inverter has a length of λ/4 and employs not only a stepped-impedance 
configuration but also asymmetrical and bending structures in order to improve frequency selectivity and compactness. 
The inverter is applied as an impedance/admittance inverter to the ultra-wideband (UWB) band-pass filter. The UWB 
band-pass filter configuration is based on a stub band-pass filter consisting of quarter-wavelength impedance inverters 
and shunt short-circuited stubs λ/4 in length. The asymmetrical stepped-impedance low-pass type inverter improves 
not only the spurious responses, but also the return loss characteristics associated with a UWB band-pass filter, while 
a compact size is maintained. The UWB band-pass filter using the proposed inverters is fabricated and tested. The 
measured results show excellent attenuation characteristics at out-band frequencies, which exceed 18 dB up to 39 GHz. 
The insertion loss within the pass-band (from 3.1 to 10.6 GHz) is below 1.7 dB, the return loss is below 10 dB, 
and the group delay is below 1 ns.
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Ⅰ. Introduction

Bandpass filters with excellent out-of-band rejection 
and high selectivity are essential components of a wire-
less communication system. The wide stop-band charac-
teristics of band-pass filters are usually required to be in 
association with the nonlinear components so as to elimi-
nate the undesired interference, noise, and harmonics in 
the stop-band [1].

Several approaches have been introduced to enhance 
the spurious responses [2]～[8]. One of the conventional 
ways is to push up the first spurious response to a high-
er frequency range by using stepped-impedance reso-
nators [2]. In [3] and [4] attempts were made to mini-
mize the difference between the even/odd mode veloci-
ties, or to equalize the modal electrical lengths of micro-
strip coupled lines to eliminate the spurious response. In 
[5], the implementation of the wiggly-line filter was in-
troduced in order to suppress the first spurious pass- 
band. For a broader stop-band, the employment of a uni-
planar compact photonic-bandgap (PBG) structure in the 
microstrip band-pass filter was also introduced in [6]. In 
addition, two independent transmission zeros can be cre-
ated at the required frequencies in order to cancel the 
spurious responses by means of proper tapping at both 
the input and output resonators [7]. In [8], a band-pass 

filter with a wide-stop-band was proposed by using dif-
ferent types of resonators with the same fundamental 
resonant frequency, but with different higher-order reso-
nant frequencies. However, these approaches have limi-
tations in the elimination of the spurious responses. The 
most effective and simplest approach is to cascade a 
low-pass filter into a band-pass filter, which results in 
the degradation of the insertion loss characteristics and 
an increase in the filter size [9]. However, when the 
low-pass filter is employed as impedance/admittance in-
verters, the drawbacks of the previous designs can be 
overcome. In this paper, we present an analysis and de-
sign method for an asymmetrical stepped-impedance 
low-pass type inverter with an overall electrical length 
of λ/4. The proposed inverter employs the asymmetrical 
and bending structure applied to the conventional step-
ped-impedance low-pass filter, so that it not only im-
proves the performances of the spurious response and 
high selectivity, it does so while maintaining a compact 
size. Even though the proposed low-pass type inverter 
can be applied as impedance/admittance inverters on the 
band-pass filters, the UWB band-pass filter is chosen in 
order to show the usefulness of this type of inverter. 
The designed UWB filter is based on a stub band-pass 
filter which consists of quarter-wavelength transformers 
and quarter-wavelength shunt short-circuited stubs [10]. 
The configuration has the advantages of easy fabrication
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(a)

(b)

Fig. 1. (a) A conventional quarter-wavelength transformer. 
(b) The 5th-order stepped-impedance low-pass type 
inverter.

  

                (a)                       (b)

Fig. 2. (a) The even-mode equivalent circuit. (b) The odd- 
mode equivalent circuit in Fig. 1(a).

               (a)                       (b)

Fig. 3. (a) The even-mode equivalent circuit. (b) The odd- 
mode equivalent circuit in Fig. 1(b).

and compact size. 
This paper is organized as follows. In section 2 the 

analysis and design methods of the stepped-impedance 
inverter will be discussed. By using the even- and the 
odd-mode analysis approach, the precise design of the 
5th-order stepped-impedance low-pass type inverter is 
performed. The UWB band-pass filter that is based on 
the stub band-pass filter is introduced briefly in section 
3 and it is extended to adopt the proposed inverter. In 
section 4, the simulated as well as the measured results 
of the UWB band-pass filter are discussed. Finally, the 
conclusions are presented in section 5.

Ⅱ. A Study of the Asymmetrical Stepped-Impedance 
Low-Pass Type Inverter

2-1 Analysis of a Stepped-Impedance Low-Pass Type 
Inverter

The design of the 5th-order stepped-impedance low-pass 

type inverter with an overall electrical length of λ/4 can 
be achieved using an even/odd mode analysis. Since any 
higher-order low-pass type inverter of the Chebyshev 
and Butterworth responses can be analyzed in a similar 
manner, a 5th-order inverter of the Chebyshev response 
is chosen and will be analyzed for application to the 
UWB band-pass filter in section 3.

Fig. 1 shows the λ/4 transformer and the 5th-order 
stepped-impedance low-pass type inverter. In order to 
apply this type of inverter to the design of band-pass fil-
ter, the structure in Fig. 1(b) should have the same elec-
trical length and characteristic impedance as the λ/4 
transformer in Fig. 1(a) within the frequency range of 
interest. Fig.2 and Fig. 3 show the even/odd mode 
equivalent circuits in Fig. 1(a) and (b), respectively.

When the conditions, Zin_even,1=Zin_even,2 and Zin_odd,1= 
Zin_odd,2 are imposed, the following equations can be de-
rived
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Since the configuration in Fig. 1(b) should have char-
acteristics of conventional low-pass filters such as a 
Butterworth or Chebyshev low-pass filter response, the 
relationship between the phases (θ1, θ2, and θ3) and 
the characteristic impedances (Z1, Z2, and Z3) in Fig. 
1(b) should be satisfied as follows [16]:
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where fC is the cut-off frequency of the low-pass type 
inverter in Fig. 1(b), f0 is the center frequency of the λ
/4 transformer in Fig. 1(a), g1, g2 and g3 are element 
values of the low-pass prototype filter, and Z0 is the 
characteristic impedance of the λ/4 transformer in Fig. 
1(a).

Since equations (1) and (2) have the same magnitude, 
with the opposite sign, the summation of two equations 
becomes zero. Therefore, from equations (1)～(5), the 
design equation can be obtained as
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To design the stepped-impedance low-pass type in-
verter with an electrical length of π/2 and a character-
istic impedance of 40 Ω at the center frequency of 6.85 
GHz, the design parameters (Z1, Z2, and Z3, θ1, θ2, and 
θ3) in Fig. 1(b) can be obtained by using (1)～(6). When 
θ2/θ1 is α, (1) and (6) become equations only consist-
ing of θ1 and θ3. Therefore, θ1 and θ3 can be ob-
tained from (1) and (6). The value of θ2 can be sub-
sequently determined as αθ1. Finally, Z1, Z2 and Z3 can 
be derived from (1)～(3). Fig. 4 shows the impedance 
and phase variations for the configuration in Fig. 1(b) as 
a function of the α value (=θ2/θ1). From Fig. 4, one 
can choose the feasible impedances and phases in Fig. 
1(b) by selecting α. Fig. 5 shows the magnitude and 
the phase characteristics of the λ/4 transformer and the 
low-pass type inverter in Fig. 1 when α=2.5. In this 
case, the impedances and the phases in Fig. 1(b) are 
chosen as follows: Z1=105 Ω, Z2=21 Ω, Z3=130 Ω, θ1 

=7º, θ2=19º and θ3=13º. As shown in Fig. 5, the mag-
nitude and the phase responses of the low-pass type in-
verter in the pass-band are similar to those of the λ/4 
transformer. Moreover, the attenuation characteristics are 
maintained at the stop-band above 15GHz in the low- 
pass type inverter configuration as shown in Fig. 5(a). 
Therefore, the stepped-impedance low-pass type inverter 
has an overall electrical length of λ/4 at the center fre-
quency of the pass-band, as well as possessing Cheby-
shev low-pass filter characteristics.

2-2 Asymmetrical Stepped-Impedance Low-Pass Type 
Inverter with Enhanced Stop-Band Performances

Asymmetrical stepped-impedance low-pass filters of-
fer the advantage of an enhanced spurious response 
[17]. Fig. 6(b) is the equivalent circuit of the asymmetri-
cal stepped-impedance configuration in Fig. 6(a) [18]. In 
Fig. 6(b), RP1 and RP2 are the series resistance from the 
radiation loss of the asymmetrical step discontinuity in 
Fig. 6(a). In [18], as the offset (t) in Fig. 1(a) is increa-
sed, the loss by RP1 and RP2 is also increased, expo-
nentially, with frequency. Accordingly, an asymmetrical 
stepped-impedance structure has effectively suppressed 
the spurious response in the out-band [17]. Moreover, the 

(a)

(b)

Fig. 4. (a) Variation of impedances in Fig. 1(b). (b) Varia-
tion of phases in Fig. 1(b) as a function of values 
of α (=θ2/θ1). (f0=6.85 GHz, fC=15 GHz, Z0=40 
Ω, g1=0.7563, g2=1.3049, and g3=1.5773 (5th-order 
Chebyshev filter with 0.01 dB ripples).

asymmetrical stepped-impedance low-pass type inverter 
has transmission zeros in the out-band. Fig. 7(a) shows 
the stepped-impedance low-pass type inverter to which 
the asymmetrical configuration is applied. 
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(a)

(b)

Fig. 5. (a) A simulated magnitude. (b) Simulated phase cha-
racteristics of the λ/4 transformer (6.85 GHz) with 
40 Ω characteristic impedance as well as the stepped- 
impedance lowpass type inverter (fC=15 GHz) in 
Fig. 1 (Z1=105 Ω, Z2=21 Ω, Z3=130 Ω, θ1=7º, θ2 

=19º, and θ3=13º when α=2.5).

 

(a)

(b)

Fig. 6. (a) Stepped-impedance structure in which asymme-
trical discontinuity is employed. (b) Equivalent circuit.

Fig. 7(b) and (c) are the simulation results of the con-
ventional stepped-impedance low-pass type inverter and 
the asymmetrical stepped-impedance low-pass type in- 

(a)

(b)

(c)

Fig. 7. (a) Asymmetrical stepped-impedance low-pass type 
inverter (t1=0.35 mm, t2=1.2 mm, Z1=105 Ω, Z2= 
21 Ω, Z3=130 Ω, θ1=7º, θ2=19º, and θ3=13º 
(fC=15 GHz)). (b) Simulated magnitude response. 
(c) Simulated phase response.

verter. The simulation is performed using Agilent`s ADS 
Momentum. As shown in Fig. 7(b), the asymmetrical-
stepped-impedance low-pass type inverter has transmi-
ssion zeros, because the low impedance section in Fig. 
7(a)  operates as an open stub in contrast to that of the 
conventional stepped-impedance low-pass type inverter 
in Fig. 1(b). Therefore, when asymmetrical step dis-
continuity is applied to the stepped-impedance low-pass 
type inverter, the spurious response is improved by the 
radiation loss (RP1 and RP2) and the transmission zeros.
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(a)
                     

(b)

Fig. 8. (a) The layout of the 2nd-order stub UWB bandpass 
filter with λ/4 impedance/admittance inverters and 
λ/4 short-circuited stubs, and (b) its simulated re-
sponses for various values of Z0,1 and Z2,3.

Ⅲ. A Stub UWB Band-Pass Filter with a Proposed 
Low-Pass Type Inverter Acting as Impedance/ 

Admittance Inverters

3-1 A Stub UWB Band-Pass Filter

The layout of the designed two-pole band-pass filter 
is shown in Fig. 8 (a). The filter consists of short-circuit-
ed shunt stubs and a λ/4 inverter for compact size as 
in [16]. The filter is designed based on the following 
equations:
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In equation (7)～(11), the value of Y0 is filter admit-
tance of the two-pole band-pass filter, and the Yis (i=1, 
2…n) are the admittance value of the λ/4 shunt stubs, 
and J1,2 is the value of the J-inverter.

In order to design the UWB band-pass, the required 
parameters are f0=6.85 GHz, fractional bandwidth (FBW) 
=1.09 and Y0=0.02. The element values for 0.01 dB rip-
ple Chebyshev response are used. By using these ele-
ment values and the design equations (7)～(11), the im-
pedance values for the layout can be derived as follows: 
Z1=101 Ω, Z1,2=33.7 Ω, and Z0,1=50 Ω. The simulated 
results can be obtained as shown in Fig. 8(b). This fig-
ure shows that the UWB band-pass filter has a band-
width ranging from 3.1 GHz to 10.6 GHz. The return 
loss within the pass-band can be enhanced by adjusting 
the value of Z0,1 in Fig. 8(a). The number of poles in-
creases when the impedance value of Z0,1 is lower than 
50 Ω. Therefore, the return loss characteristic is im-
proved by using the lower impedance at the position of 
Z0,1 [11].

3-2 UWB Band-Pass Filter using the Proposed Inverter 
as the Input/Output Inverters Stub UWB Band-Pass 
Filter

Fig. 9(a) shows the proposed UWB band-pass filter 
with the proposed asymmetrical stepped-impedance 
low-pass type inverter and Fig. 9(b) shows the simulated 
results. The simulation is performed using Agilent`s ADS 
Momentum. The asymmetrical stepped-impedance low- 
pass type inverter is utilized as the impedance/admittance 
inverter instead of the λ/4 transformer (Z0,1, Z2,3) in Fig. 
8(a). To replace the λ/4 transformers, the low- pass 
type inverter is designed using the values presented in 
Fig. 4, so that the low-pass type inverter has an overall 
electrical length of λ/4 and a characteristic impedance 
of 40 Ω at the 6.85 GHz as shown in Fig. 7. For the 
compact size, a bending structure is applied to the 
low-pass type inverter in Fig. 7(a) as shown in Fig. 9(a). 
The overall size of the designed UWB band- pass filter 
is 23.1×14.1 mm.

Ⅳ. Measurement Results

Fig. 10 shows the photograph of the fabricated UWB 
band-pass filter with the asymmetrical stepped-impe-
dance low-pass type inverter. The substrate is Rogers 
RO3003 with a relative dielectric constant of 3.0, a 
thickness of 20 mil, and a tanδ=0.0013. The results 
were measured using an Agilent 8510C vector network 
analyzer and Inter-Continental Microwave's substrate test 
fixture. The measured frequency responses are given in 
Fig. 11(a) and 11(b). As can be seen, the simulated and 
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l3

w2

w3

w1P1 P2

Asymmetrical 
stepped-impedance 

lowpass filter

(a)
                    

  

(b)

Fig. 9. (a) The layout of the proposed UWB bandpass filter 
with an asymmetrical stepped-impedance lowpass type 
inverter, and (b) Simulated response (l1=3.4 mm, l2=1.7 
mm, l3=2.5 mm, l1,2=7.4 mm, lR1=8 mm, w1=0.5 
mm, w2=1.7 mm, w3=0.1 mm, and wR1=0.5 mm).

Fig. 10. Photograph of the fabricated UWB bandpass filter.

measured results are in good agreement. However, there 
is an increase in the insertion loss compared to the si-
mulated result due to the fabrication error. It has a 
pass-band from 3.1 GHz to 10.6 GHz for a less than 1.7 
dB insertion loss and the return loss is approximately 10 
dB within the pass-band. The most remarkable charac-
teristic is that it has excellent spurious suppression of 
about 18 dB in the out-band frequency range and up to 

(a)

(b)

Fig. 11. (a) Simulated and measured frequency responses. 
(b) Group delay.

Table 1. Comparison with other wide stop-band UWB 
band-pass filters

Return loss Insertion loss Spurious 
response

[11] 15 dB< 0.86 dB> ～26 GHz 
(<—18 dB)

[12] 10 dB< 1 dB> ～ 25 GHz 
(<—20 dB)

[13] 10 dB< 0.5 dB> ～18 GHz 
(<—30 dB)

[14] 10 dB< 0.5 dB> ～18 GHz
(<—38 dB)

This work 10 dB< 1.7 dB> ～39 GHz
(<—18 dB)

39 GHz. The group delay below 1ns can be observed 
within the pass-band as shown in Fig. 11(b). Compared 
to other published results [11]～[14], the proposed UWB 
filter shows a very low spurious response, while the other 
characteristics are almost the same as in Table 1.
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Ⅴ. Conclusion

We have presented an asymmetrical stepped-impe-
dance low-pass type inverter with an overall electrical 
length of λ/4. In order to improve selectivity, asym-
metrical configuration is also discussed. The proposed 
stepped-impedance low-pass type inverter was analyzed 
through the even/odd mode analysis, and a 5th-order in-
verter is designed to be applied to the UWB band-pass 
filter. As a result, a UWB band-pass filter with an ex-
cellent spurious response up to 40 GHz could be achi-
eved. The return loss of the pass-band was also impro-
ved. An asymmetrical stepped-impedance low-pass type 
inverter can be applied to various band-pass filters in 
which low spurious characteristics are required.
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