DOI QR코드

DOI QR Code

Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India

  • Malik, Y.P.S. (Division of Virology, IVRI Mukteswar) ;
  • Chakravarti, S. (Division of Virology, IVRI Mukteswar) ;
  • Sharma, K. (Division of Virology, IVRI Mukteswar) ;
  • Vaid, N. (Division of Virology, IVRI Mukteswar) ;
  • Rajak, K.K. (Division of Virology, IVRI Mukteswar) ;
  • Balamurugan, V. (Division of Virology, IVRI Mukteswar) ;
  • Biswas, S.K. (Division of Virology, IVRI Mukteswar) ;
  • Mondal, B. (Division of Virology, IVRI Mukteswar) ;
  • Kataria, R.S. (National Bureau of Animal Genetic Resources (NABGR)) ;
  • Singh, R.K. (Division of Virology, IVRI Mukteswar)
  • Received : 2010.09.22
  • Accepted : 2010.12.09
  • Published : 2011.07.01

Abstract

Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.

Keywords

References

  1. Aderem, A. and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune responses. Nature 406:782-787. https://doi.org/10.1038/35021228
  2. Akira, S. and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499-511. https://doi.org/10.1038/nri1391
  3. Akira, S., S. Uematsu and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801. https://doi.org/10.1016/j.cell.2006.02.015
  4. Barton, G. M., J. C. Kagan and R. Medzhitov. 2006. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7:49-56. https://doi.org/10.1038/ni1280
  5. Beutler, B. and M. Rehli. 2002. Evolution of TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 270:1-21.
  6. Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira and C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-1531. https://doi.org/10.1126/science.1093616
  7. Hashimoto, C., K. L. Hudson and K. V. Anderson. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269-279. https://doi.org/10.1016/0092-8674(88)90516-8
  8. Janeway, Jr. C. A. and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  9. Jin, M. S., S. E. Kim, J. Y. Heo, M. E. Lee, H. M. Kim, S. G. Paik, H. Lee and J. O. Lee. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071-1082. https://doi.org/10.1016/j.cell.2007.09.008
  10. Keestra, A. M., M. R. de Zoete, R. A. van Aubel and J. P. van Putten. 2008. Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol. Immunol. 45:1298-1307. https://doi.org/10.1016/j.molimm.2007.09.013
  11. Lemaitre, B., E. Nicolas, L. Michaut, J. M. Reichhart and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983. https://doi.org/10.1016/S0092-8674(00)80172-5
  12. Loftus, R. T., D. E. MacHugh, D. G. Bradley, P. M. Sharp, P. Cunningham. 1994. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. USA 91:2757-2761. https://doi.org/10.1073/pnas.91.7.2757
  13. Matsushima, N., T. Tanaka, P. Enkhbaya, T. Mikami, M. Taga, K. Ymada and Y. Kuroki. 2007. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124. https://doi.org/10.1186/1471-2164-8-124
  14. Medzhitov, R. and C. A. Jr. Janeway. 2000. Innate immunity. N. Engl. J. Med. 343:338-344. https://doi.org/10.1056/NEJM200008033430506
  15. Muzio, M., N. Polentarutti, D. Bosisio, M. K. Prahladan and A. Mantovani. 2000. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J. Leukoc. Biol. 67:450-456.
  16. O'Neill, L. A. 2004. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 25:687-693. https://doi.org/10.1016/j.it.2004.10.005
  17. Pandey, S. and D. K. Agrawal. 2006. Immunobiology of Toll-like receptors: Emerging trends. Immun. Cell Biol. 84:333-341. https://doi.org/10.1111/j.1440-1711.2006.01444.x
  18. Pasare, C. and R. Medzhitov. 2004. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6:1382-1387. https://doi.org/10.1016/j.micinf.2004.08.018
  19. Poltorak, A., P. Ricciardi-Castagnoli, S. Citterio and B. Beutler. 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97:2163-2167. https://doi.org/10.1073/pnas.040565397
  20. Schultz, J., R. R. Copley, T. Doerks, C. P. Ponting and P. Bork. 2000. SMART: A Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28:231-234. https://doi.org/10.1093/nar/28.1.231
  21. Takeda, K., T. Kaisho and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335-376. https://doi.org/10.1146/annurev.immunol.21.120601.141126
  22. Underhill, D. M., A. Ozinsky, K. D. Smith and A. Aderem. 1999. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96:14459-14463. https://doi.org/10.1073/pnas.96.25.14459
  23. Weber, A. N. R., M. A. Morse and N. J. Gay. 2004. Four N-linked glycosylation sites in human Toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J. Biol. Chem. 279:34589-34594. https://doi.org/10.1074/jbc.M403830200
  24. West, A. P., A. A. Koblansky and S. Ghosh. 2006. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol. 22:409-437. https://doi.org/10.1146/annurev.cellbio.21.122303.115827
  25. Zhou, H., J. Gu, S. J. Lamont and X. Gu. 2007. Evolutionary analysis for functional divergence of the toll-like receptor gene family and altered functional constraints. J. Mol. Evol. 65:119-123. https://doi.org/10.1007/s00239-005-0008-4

Cited by

  1. Tyrosine phosphorylation of monocyte-derived macrophage proteins in buffalo (Bubalus bubalis): A potential phenotype of natural resistance vol.03, pp.02, 2013, https://doi.org/10.4236/ojas.2013.32019