DOI QR코드

DOI QR Code

Immunophenotype Characterization for Swine Selected Line, Which is Resistant for the Mycoplasma Pneumonia

  • Katayama, Masafumi (Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University) ;
  • Fukuda, Tomokazu (Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University) ;
  • Okamuara, Toshihiro (Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University) ;
  • Suda, Yoshihito (School of Food, Agricultural and Environmental Sciences, Miyagi University) ;
  • Suzuki, Eisaku (Miyagi Prefecture Animal Industry Experiment Station) ;
  • Uenishi, Hirohide (National Institute of Agrobiological Science) ;
  • Suzuki, Keiichi (Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University)
  • Received : 2010.10.31
  • Accepted : 2011.03.21
  • Published : 2011.07.01

Abstract

Mycoplasma Pneumonia of swine (MPS) decreases the daily growth of pigs, and, co-infection with a virus sometimes causes severe pneumonia. Genetic selection of pigs resistant to the pulmonary MPS lesion might solve the economic loss due to MPS in animal production. Here, we examined the immunophenotype of Landrace line (Miyagino L2), genetically selected to reduce the incidence of pulmonary MPS lesion for 5 generations in Miyagi Prefecture Animal Industry Experiment Station. Although this line is expected to be resistant to the pulmonary MPS lesion, the biological characteristics of its immune function are not clear. We investigated details of the immunorelated phenotype of Miyagino L2 at the hematological and molecular biological level, including cytokine expression, and compared the results with that of non-genetically selected Landrace. Miyagino L2 showed decreased antigen-specific IgG and IgM production and increased CD8-positive T-cell population, and high levels of cortisol concentration, suggesting that the MPS-resistant phenotype is associated these immunological differences. Additionally, T-cell CD4 expression was highly correlated with the MPS expected breeding value. Although the detailed mechanisms underlying this high correlation remain unknown, our result suggested that the genetic selection of the expression level of CD4 might be useful to improve MPS resistance in pig production.

Keywords

References

  1. Asai, T. M. Okada, M. Ono, T. Irisawa, Y. Mori, Y. Yokomizo and S. Sato. 1993. Increased levels of tumor necrosis factor and interleukin-1 in bronchoalveolar lavage fluids from pigs infected with Mycoplasma hyopneumoniae. Vet. Immunol. Immunopathol. 38:253-260. https://doi.org/10.1016/0165-2427(93)90085-I
  2. Asai, T. M. Okada, M. Ono, Y. Mori, Y. Yokomizo and S. Sato. 1994. Detection of interleukin-6 and prostaglandin E2 in bronchoalveolar lavage fluids of pigs experimentally infected with Mycoplasma hyopnemoniae. Vet. Immunol. Immunopathol. 44:97-102. https://doi.org/10.1016/0165-2427(94)90172-4
  3. Blanchard, B. M., M. Vena, A. Cavalier, J. L. Lannic, J. Gouranton and M. Kobisch. 1992. Electron microscopic observation of the respiratory tract of SPF piglets inoculated with Mycoplasma hyopneumoniae. Vet. Microbiol. 30:329-341. https://doi.org/10.1016/0378-1135(92)90020-T
  4. Brown-Borg, H. M., H. G. Klemcke and F. Blecha. 1993. Lymphocyte proliferative responses in neonatal pigs with high or low plasma cortisol concentration after stress induced by restraint. Am. J. Vet. Res. 54:2015-2020.
  5. Choi, C. D. Kwon, K. Jung, Y. Ha, Y. H. Lee, O. Kim, H. K. Park, S. H. Kim, K. K. Hwang and C. Chae. 2006. Expression of inflammatory cytokines in pigs experimentally infected with Mycoplasma hyopneumoniae. J. Comp. Pathol. 134:40-46. https://doi.org/10.1016/j.jcpa.2005.06.009
  6. Davis, J. K., R. F. Parker, H. White, D. Dziedzic, G. Taylor, M. K. Davidson, N. R. Cox and G. H. Cassell. 1985. Strain differences in susceptibility to murine respiratory mycoplasmosis in C57BL/6 and C3H/HeN mice. Infection Immunology 50:647-654.
  7. DeBey, M. C., C. D. Jacobson and R. F. Ross. 1992. Histochemical and morphologic changes of porcine airway epithelial cells in response to infection with Mycoplasma hyopneumoniae. Am. J. Vet. Res. 53:17705-17710.
  8. Johnson, R. W., E. H. Borell, L. L. Anderson, L. D. Kojic and J. E. Cunnick. 1994. Intracerebroventricular injection of corticotropin-releasing hormone in the pig: acute effects on behavior, adrenocorticotropin secretion, and immune suppression. Endocrinology 135:642-648. https://doi.org/10.1210/en.135.2.642
  9. Katayama, M., T. Fukuda, T. Okamura, E. Suzuki, K. Tamura, Y. Shimizu, Y. Suda and K. Suzuki. 2011. Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Anim. Sci. J. 82:274-281. https://doi.org/10.1111/j.1740-0929.2010.00826.x
  10. Kyriakis, S. C., K. Saoulidis, S. Lekkas, Ch. C. Miliotis, P. A. Papoutsis and S. Kennedy. 2002. The effects of immunomodulation on the clinical and pathological expression of postweaning multisystemic wasting syndrome. J. Comp. Pathol. 126:38-46. https://doi.org/10.1053/jcpa.2001.0520
  11. Lorenzo, H., O. Quesada, P. Assuncao, A. Castro and F. Rodriguez. 2006. Cytokine expression in porcine lungs experimentally infected with Mycoplasma hyopneumoniae. Vet. Immunol. Immunopathol. 109:199-207. https://doi.org/10.1016/j.vetimm.2005.07.021
  12. Mebus, C. A. and N. R. Underdahl. 1977. Scanning electron microscopy of trachea and bronchi from gnotobiotic pigs inoculated with Mycoplasma hyopneumoniae. Am. J. Vet. Res. 38:1249-1254.
  13. Messier, S. R. F. Ross and P. S. Paul. 1989. Humoral and cellular immune responses of pigs inoculated with Mycoplasma hyopneumoniae. Am. J. Vet. Res. 51:52-58.
  14. Mosmann, T. R. and R. L. Coffman. 1989. $T_H1\;and\;T_H2$ cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:145-173. https://doi.org/10.1146/annurev.iy.07.040189.001045
  15. Mosmann, T. R., H. Cherwinski, M. W. Bond, M. A. Giedlin and R. L. Coffman. 1986. Two types of murine helper T cell clone. Part I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348-2357.
  16. Morrison, D. F., D. L. Foss and M. P. Murtaugh. 2000. Interleukin-10 gene therapy-mediated amelioration of bacterial pneumonia. Infect. Immun. 68:4752-4758. https://doi.org/10.1128/IAI.68.8.4752-4758.2000
  17. Muneta, Y., Y. Minagawa, Y. Shimoji, Y. Ogawa, H. Hikono and Y. Mori. 2008. Immune response of gnotobiotic piglets against Mycoplasma hyopneumoniae. J. Vet. Med. Sci. 70:1065-1070. https://doi.org/10.1292/jvms.70.1065
  18. Muneta, Y., H. Uenishi, R. Kikuma, K. Yoshihara, Y. Shimoji, R. Yamamoto, N. Hamashima, Y. Yokomizo and Y. Mori. 2003. Porcine TLR2 and TLR6: Identification and their involvement in Mycoplasma hyopneumoniae infection. J. Interferon Cytokine Res. 23:583-590. https://doi.org/10.1089/107999003322485080
  19. Murtaugh, M. P., C. R. Johnson, Z. Xiao, R. W. Scamurra and Y. Zhou. 2009. Species specialization in cytokine biology: is interleukin-4 central to the Th1-Th2 paradigm in swine? Dev. Comp. Immunol. 33:344-352. https://doi.org/10.1016/j.dci.2008.06.014
  20. Ross, R. F. 1999. Mycoplasmal disease. In: Disease of Swine (Ed. B. E. Straw, S. D. Allaire, W. L. Mengeling and D. J. Taylor). Iowa State University Press, Ames, pp. 495-509.
  21. Sarradell, J. M. Andrada, A. S. Ramirez, A. Fernandez, J. C. Gomez-Villamandos and A. Jover. 2003. A morphologic and immunohistochemical study of the bronchus-associated lymphoid tissue of pigs naturally infected with Mycoplasma hyopneumoniae. Vet. Pathol. 40:395-404. https://doi.org/10.1354/vp.40-4-395
  22. Suzuki, K., W. Onodera, Y. Kumagai, T. Kachi, Y. Shimizu, J. Yoshino, Y. Suda and J. Kobayashi. 2009. Effects of dietary seaweed, ${\beta}-glucan$ and yeast on immunity and growth traits in growing pigs. Nihon Chikusan Gakkaiho 80:27-34. https://doi.org/10.2508/chikusan.80.27
  23. Tajima, M., T. Yagihashi, T. Nunoya, A. Takeuchi and F. Ohashi. 1984. Mycoplasma hyopneumoniae infection in pigs immunosuppressed by thymectomy and treatment with antithymocyte serum. Am. J. Vet. Res. 45:1928-1932.
  24. Tayama, T., K. Suzuki, S. Mikawa, T. Awata, H. Uenishi, T. Hayashi, K. Maeda, T. Kachi, Y. Uemoto, H. Kano, T. Shibata, C. Kojima and A. Nishida. 2006. Identification of quantitative trait loci for immune traits in landrace purebred swine. Jpn. J. Swine Science 43:187-194. https://doi.org/10.5938/youton.43.187
  25. Thacker, E. L., P. G. Halbur, R. F. Ross, R. Thanawongnuwech and B. J. Thacker. 1999. Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. J. Clin. Microbiol. 37:620-627.
  26. Wallgren, P., I. L. Wilen and C. Fossum. 1994. Influence of experimentally induced endogenous production of cortisol on the immune capacity in swine. Vet. Immunol. Immunopathol. 42:301-316. https://doi.org/10.1016/0165-2427(94)90075-2
  27. Williams, P. N., C. T. Collier, J. A. Carroll, T. H. Jr. Welsh and J. C. Laurenz. 2009. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs. Domest. Anim. Endocrinol. 37:139-147. https://doi.org/10.1016/j.domaniend.2009.04.004

Cited by

  1. Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization vol.85, pp.4, 2014, https://doi.org/10.1111/asj.12158
  2. Immunological characterization of peripheral blood leukocytes using vaccine for mycoplasmal pneumonia of swine (MPS) in swine line selected for resistance to MPS pp.13443941, 2013, https://doi.org/10.1111/asj.12058
  3. Immunogenic properties of Landrace pigs selected for resistance to mycoplasma pneumonia of swine vol.87, pp.3, 2015, https://doi.org/10.1111/asj.12440
  4. Correlated response of peripheral blood cytokines with selection for reduced mycoplasma pneumonia of swine lesions in Landrace pigs vol.87, pp.4, 2015, https://doi.org/10.1111/asj.12462
  5. Immunogenic properties and mycoplasmal pneumonia of swine (MPS) lung lesions in Large White pigs selected for higher peripheral blood immune capacity vol.87, pp.5, 2016, https://doi.org/10.1111/asj.12471
  6. Mycoplasma pneumonia of swine (MPS) resistance and immune characteristics of pig lines generated by crossing an MPS pulmonary lesion selected Landrace line and a highly immune capacity selected Large White line vol.87, pp.8, 2016, https://doi.org/10.1111/asj.12529
  7. Effects of mycoplasmal pneumonia of swine (MPS) lung lesion-selected Landrace pigs on MPS resistance and immune competence in three-way crossbred pigs vol.88, pp.4, 2017, https://doi.org/10.1111/asj.12698
  8. Potential use of local and systemic humoral immune response parameters to forecast Mycoplasma hyopneumoniae associated lung lesions vol.12, pp.4, 2017, https://doi.org/10.1371/journal.pone.0175034
  9. RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to Mycoplasma hyopneumoniae infection vol.7, pp.None, 2011, https://doi.org/10.7717/peerj.7900
  10. IL‐12p40 gene expression in lung and hilar lymph nodes of MPS‐resistant pigs vol.91, pp.1, 2011, https://doi.org/10.1111/asj.13450