DOI QR코드

DOI QR Code

A Comparative Case Study of Cost Efficiency DEA Model based on the Farrell_Debreu's and Tone's approach

사례를 이용한 Farrell_Debreu와 Tone방식에 의한 DEA원가효율성 모형의 비교분석에 관한 연구

  • O, Dong-Il (Dept. of Finance & Insuranec, Sang-Myung University)
  • 오동일 (상명대학교 금융보험학부)
  • Received : 2011.03.16
  • Accepted : 2011.06.09
  • Published : 2011.06.30

Abstract

This study pursues to compare the two types of cost efficiency model based on DEA. Two types of DEA are derived by the two different approaches by Farrell_Debreu and Tone. Based on two concepts, Two different DEA model are derived. The characteristics and difference of two are looked up. Based on the simple numerical case, The efficient rates, the rankings, the reference sets are different. The model based on Tone's approach shows the more cheap attainable target cost level. DEA model set by Tone is superior in measuring cost efficiency, but Farrell_Debreu type DEA model is better to explain data in technical efficiency. So, it is required to use the results of DEA more carefully.

본 연구는 Farrell_Debreu방식과 Tone방식에 의해 제시된 DEA모형을 원가효율성 관점에서 비교 분석하고 이 한계를 극복하기 위한 방안을 제시하였다. 전통적인 접근법인 Farrell_Debreu 방식과 최근에 연구된 Tone 방식의 공통점과 차이점을 알아보고 각 접근법에 따른 DEA모형을 구축하였다. 또한 두 모형의 결과를 비교하기 위해 분석 사례를 구축하고 두 모형에 따른 분석과 결과치의 차이를 살펴봄으로써 두 모형의 장단점을 비교할 수 있었다. 두 접근법은 동일한 자료를 사용하더라도 자료의 분석 방식이 상이하고 효율성의 값, 각 단위의 효율성 순위, 참조집합에 있어 차이를 나타냈다. 전통적인 모형에 비해 Tone의 방식은 동일한 투입량이라 하더라도 보다 낮은 가격으로 조달 가능한 투입물에 강조점을 둠으로써 원가효율성 측면에서는 현실 설명력이 높지만 기술적 효율성 측면에서는 Farrell_Debreu방식에 의한 DEA모형이 더 합리적인 것으로 나타났다.

Keywords

References

  1. Banker, R.D., Morey, R.C., "Efficiency analysis for exogenously fixed inputs and outputs", Operations Research, Vol.34 No.4, 1986, 513-21 https://doi.org/10.1287/opre.34.4.513
  2. Banker, R. D., A. Charnes and W. W. Cooper, "Some Models for stimating Technical and Scale Inefficiencies in Data Envelopment Analysis", Management Science, Vol.30, 1984, 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
  3. Charnes, A., W.W. Cooper and E. Rhodes, "Measuring the Efficiency of Decision Making Units", European Journal of Operational Research, Vol.2, No.6, 429-444.
  4. Charnes, A., Cooper, W.W.,, Lewin, A.Y., Seiford, L.M., Data Envelopment Analysis: Theory, Methodology and Application, 1994.
  5. Charnes, A., W. W. Cooper and Huang, Z.M., "Polyhedral Cone-Ratio DEA Models with an illustrative Application to large Commercial Bank," Journal of Econometrics 36, 2000, 73-91.
  6. Cooper, W. W., L. M. Seiford and K. Tone, Data Envelopment Analysis(2nd ed.), Springer, 2006.
  7. Debreu, G., The coefficient of resource utilization, Econometrica 19, 1951, 273-292. https://doi.org/10.2307/1906814
  8. Dyson, R.G. and E. Thanassoulis, Reducing weight flexibility in data envelopment analysis, Journal of the Operational Research Society 39, No. 6, 1988, 563-576. https://doi.org/10.1057/jors.1988.96
  9. Farrell, M. J.," The Measurement of Productivity Efficiency", Journal of the Royal Statistical Society, Vol.12, 1957, 260-261.
  10. Fare, R., S. Grosskopf and Lovell, The Measurement of Efficiency of Production, Boston : Kluwer Nijhoff Publishing Co, 1985.
  11. Fare, R., S. Grosskopf and Lovell, Production Frontiers Cambridge University Press, 1994.
  12. K. Tone, "A Strange Case of the Cost and Allocative Efficiencies in DEA", Journal of Operational Research Society 53, 2002, 1225-1231. https://doi.org/10.1057/palgrave.jors.2601438
  13. Lovell, C.A.K., Pastor, J.T., "Target setting: an application to a bank branch network", European Journal of Operational Research, Vol.98 No.2, 1997, 290-299. https://doi.org/10.1016/S0377-2217(96)00348-7
  14. P. Anderson and N.C. Peterson, "A Procedure for Ranking Efficient Units in Data Envelopment Analysis", Management Science 39, 1993, 1261-1264. https://doi.org/10.1287/mnsc.39.10.1261
  15. P.L. Brockett, W.W. Cooper, H.C.Shin and Y. Yang, "Inefficiency and Congestion in Chinese Production before and after the 1978 Economic Reform", Scio-Economic Planning Science 32, 1998, 1-20 https://doi.org/10.1016/S0038-0121(97)00020-7
  16. R.M. Thrall, "Measures in DEA with an Application to the Malmquist Index", Journal of Productivity Analysis 13, 2000, 125-137. https://doi.org/10.1023/A:1007800830737
  17. Thompson, R.G., L. Langemeier, C. Lee, E. Lee, and R. Thrall, The role of multiplier bounds in efficiency analysis with application to Kansas farming, Journal of Econometrics 46, 1990, 93-108. https://doi.org/10.1016/0304-4076(90)90049-Y