DOI QR코드

DOI QR Code

Enhancement of SNR Characteristics in Ultrasound Doppler Color Flow Mapping

초음파 도플러 컬러 유동 사상에서 신호 대 잡음비 특성의 향상

  • Kwon, Sung-Jae (Department of Communication Engineering, Daejin University)
  • Received : 2011.02.21
  • Accepted : 2011.05.12
  • Published : 2011.05.31

Abstract

Being the most widely used in ultrasound Doppler color flow mapping, the Kasai algorithm, also known as lag-1 autocorrelation method, is capable of estimating the Doppler mean frequency relatively accurately with a modest amount of computation. Particularly in the case of imaging deep lying areas, however, its performance suffers due to low signal-to-noise ratios. The purpose of this paper is to propose a dealiased lag-2 autocorrelation method which is superior to the Kasai algorithm even at low signal-to-noise ratios and to compare their performances through simulations. The proposed algorithm is found to be better by about 2 to 3 dB than the Kasai algorithm in terms of Doppler mean frequency estimation error in the presence of measurement noise.

초음파 컬러 유동 사상에서 가장 많이 사용되는 Kasai 알고리듬은 래그-1 자기상관 방법으로서 적은 계산량으로 비교적 우수하게 도플러 평균주파수를 추정한다. 하지만 특히 깊은 곳을 영상화하는 경우 낮은 신호 대 잡음비로 인해 추정성능이 저하된다. 본 논문에서는 낮은 신호 대 잡음비에서도 Kasai 알고리듬보다 우수한 디에일리어스된 래그-2 자기상관방법을 제안하고 시뮬레이션을 통해 성능을 검증하였다. 제안한 방법은 잡음이 존재하는 경우 도플러 평균주파수 추정 성능을 평균 자승 오차 측면에서 전반적으로 약 2~3dB 정도 개선시켜줌을 확인하였다.

Keywords

References

  1. B. A. J. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing, Emantec, 2000.
  2. C. Kasai, N. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics Ultrason., vol. SU-32, no. 3, pp. 485-464, May 1985.
  3. S. C. Olhede and A. T. Walden, "Noise reduction in directional signals using multiple Morse wavelets illustrated on quadrature Doppler ultrasound," IEEE Trans. Biomed. Eng., vol. 50, no. 1, pp. 51-57, Jan. 2003. https://doi.org/10.1109/TBME.2002.807322
  4. Y. Zhang, Y. Wang, and W. Wang, "Denoising quadrature Doppler signals from bi-directional flow using the wavelet frame," IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 50, no. 5, pp. 561-564, May 2003. https://doi.org/10.1109/TUFFC.2003.1201469
  5. K. W. Ferrara and V. R. Algazi, "A new wideband spread target maximum likelihood for blood velocity estimation-Part I: Theory," IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 38, no. 1, pp. 1-16, Jan. 1991. https://doi.org/10.1109/58.67829
  6. K. W. Ferrara and V. R. Algazi, "A new wideband spread target maximum likelihood for blood velocity estimation-Part II: Evaluation of estimators with experimental data," IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 38, no. 1, pp. 17-26, Jan. 1991. https://doi.org/10.1109/58.67830
  7. A. Herment, G. Demoment, and P. Dumee, "Improved estimation of low velocities in color Doppler imaging by adapting the mean frequency estimator to the clutter rejection filter," IEEE Trans. Biomed. Eng., vol. 43, no. 9, pp. 919-927, Sept. 1996. https://doi.org/10.1109/10.532126
  8. W. D. Barber, J. W. Eberhard, and S. G. Karr, "A new time domain technique for velocity measurements using Doppler ultrasound," IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 213-229, Mar. 1985. https://doi.org/10.1109/TBME.1985.325531