DOI QR코드

DOI QR Code

Comparison of incoming solar radiation equations for evaporation estimation

증발량 산정을 위한 입사태양복사식 비교

  • 임창수 (경기대학교 토목공학과)
  • Received : 2011.01.03
  • Accepted : 2011.03.09
  • Published : 2011.03.30

Abstract

In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

Keywords

References

  1. Abdalla YAG, Feregh GM. 1988. Contribution to the study of solar radiation. Energy Conservs. Mgmt. 28: 63-67. https://doi.org/10.1016/0196-8904(88)90013-1
  2. Ahmad F, Ulfat I. 2004. Empirical models for the correlation of monthly average daily global solar radiation with hours of sunshine on a horizontal surface at Karachi, Pakistan. Turk. J. Phys. 28: 301-307.
  3. Allen RG, Peretira LS, Raes D, Smith M. 1998. Crop Evapotranspiration-guidelines for Computing Crop Water Requirements. FAO irrigation and drainage paper 56, FAO. ISBN 92-5-104219-5.
  4. Almorox J, Hontoria C. 2004. Global solar radiation estimation using sunshine duration in Spain. Energ. Convers. Manage. 45: 1529-1535. https://doi.org/10.1016/j.enconman.2003.08.022
  5. Angstrom A. 1924. Solar and terrestrial radiation. Q.J.R. Meteorol. Soc. 50: 121-125.
  6. Augustine C, Nnabuchi MN. 2009. Correlation between sunshine hours and global solar radiation in Warri, Nigeria. The Pacific Journal of Science and Technology 10(2): 574-579.
  7. Bahel V, Bakhsh H, Srinivasan R. 1987. A correlation for estimation of global solar radiation. Energy 12: 131-135. https://doi.org/10.1016/0360-5442(87)90117-4
  8. Benson RB, Paris MV, Sherry JE, Justus CG. 1984. Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements. Solar Energy 32: 523-535. https://doi.org/10.1016/0038-092X(84)90267-6
  9. Benson L. 1986. The sensitivity of evaporation rate to climate change-Results of an energy-balance approach. U.S. Geol. Surv. Water Resour. Invest. 86-4148. 40 pp.
  10. Boisvert JB, Hayhoe HN, Dube PA. 1990. Improving the estimation of global solar radiation across Canada. Agric. Forest Meteorol. 52: 275-286. https://doi.org/10.1016/0168-1923(90)90086-L
  11. Bristow K, Campbell G. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agri. Forest Meteorol. 31: 159-166. https://doi.org/10.1016/0168-1923(84)90017-0
  12. Chen R, Ersi K, Yang J, Lu S, Zhao W. 2004. Validation of five global radiation models with measured daily data in China. Energy Conversion Management 45: 1759-1769. https://doi.org/10.1016/j.enconman.2003.09.019
  13. Duffie JA, Beckman WA. 1991. Solar Engineering of Thermal Processes. New York, Wiley.
  14. Ehnberg JSG, Bollen MHJ. 2005. Simulation of global solar radiation based on cloud observation. Solar Energy 78: 157-162. https://doi.org/10.1016/j.solener.2004.08.016
  15. Elagib NA, Babiker SF, Alvi SH. 1998. New empirical models for global solar radiation over Bahrain. Energy Convert. Mgmt. 39(8): 827-835. https://doi.org/10.1016/S0196-8904(97)00035-6
  16. Ertekin C, Yaldiz O. 2000. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Conversion and Management 41: 311-330. https://doi.org/10.1016/S0196-8904(99)00127-2
  17. Gopinathan KK. 1988. A simple method for predicting global solar radiation on horizontal surface. Solar and Wind Technology 5: 581-583. https://doi.org/10.1016/0741-983X(88)90050-1
  18. Hargreaves GL, Hargreaves GH, Riley P. 1985. Irrigation water requirement for the Senegal River Basin. J. Irrigat. Drain. Eng., ASCE 111: 265-275. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:3(265)
  19. Iziomon MG, Mayer H. 2002. Assessment of some global solar radiation parameterizations. J. Atmos. Solar-Terr. Phys. 64: 1631-1643. https://doi.org/10.1016/S1364-6826(02)00131-1
  20. Linacre ET. 1993. Data sparse estimation of potential evapotranspiration using a simplified Penman equation. Agric. Forest Meteorol. 64: 225-237.
  21. Liu X, Mei X, Li Y, Zhang Y, Wang Q, Jensen JR, Porter JR. 2009. Calibration of the Angstrőm-Prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin. Agricultural and Forest Meteorology 149: 697-710. https://doi.org/10.1016/j.agrformet.2008.10.027
  22. Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models, 1. A discussion of principles. J. of Hydrology 10: 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  23. Ogelman H, Ecevit A, Tasdemiroglu E. 1984. A new method for estimating solar radiation from bright sunshine data. Solar Energy 33: 619-625. https://doi.org/10.1016/0038-092X(84)90018-5
  24. Page JK. 1961. The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from sunshine records for latitudes 40°N-40°S. In: Proceedings of UN Conference on New Sources of Energy. Paper No. 598, 4: 378-390.
  25. Penman HL. 1948. Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London. A193: 120-146.
  26. Pohlert T. 2004. Use of empirical global radiation models for maize growth simulation. Agric. Forest Meteorol. 126: 47-58. https://doi.org/10.1016/j.agrformet.2004.05.003
  27. Prescott JA. 1940. Evaporation from a water surface in relation to solar radiation. Trans. Roy. Soc. Austr. 641: 114-125.
  28. Reddy SJ. 1974. An empirical method for estimating sunshine from total cloud amount. Solar Energy 15: 281-285. https://doi.org/10.1016/0038-092X(74)90017-6
  29. Rietveld HR. 1978. A new method to estimate the regression coefficients in the formula relating radiation to sunshine. Agric. Meteorol. 19: 243-252. https://doi.org/10.1016/0002-1571(78)90014-6
  30. Sabziparvar AA, Shetaee H. 2007. Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Energy 32: 649-655. https://doi.org/10.1016/j.energy.2006.05.005
  31. Supit I, Kappel RR. 1998. A simple method to estimate global radiation. Solar Energy 63: 147-160. https://doi.org/10.1016/S0038-092X(98)00068-1
  32. Tiris M, Tiris C, Erdalli Y. 1997. Water Heating Systems by Solar Energy (in Turkish). Marmara Research Centre, Institute of Energy Syatems and Environmental Research, NATO TU-COATING, Gebze, Kocaeli, Turkey. 151 pp.
  33. Valiantzas JD. 2006. Simplified versions for the Penman evaporation equation using routine weather data. J. of Hydrology 331: 690-702. https://doi.org/10.1016/j.jhydrol.2006.06.012
  34. Zabara K. 1986. Estimation of the global solar radiation in Greece. Solar and Wind Technology 3: 267-272. https://doi.org/10.1016/0741-983X(86)90005-6
  35. Zhou J, Wu Y, Yan G. 2005. General formula for estimation of monthly average daily global solar radiation in China. Energy Conversion and Management 46: 257-268. https://doi.org/10.1016/j.enconman.2004.02.020