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Soil microorganisms play a major role in improving soil fertility and plant health. Symbiotic arbuscular 
mycorrhizal fungi (AMF) form a key component of the soil microbial populations. AMF form a mutualistic 
association with the host plant and exert a positive influence on its growth and nutrient uptake. The 
establishment of mycorrhizal symbioses with the host plant can positively be influenced by plant growth 
promoting rhizobacteria through various mechanisms such as increased spore germination and hyphal 
permeability in plant roots. Though there are evidences that combined interactions between AMF and PGPR 
can promote the plant growth however mechanisms of these interactions are poorly understood. Better 
understanding of the interactions between AMF and other microorganisms is necessary for maintaining soil 
fertility and enhancing crop production. This paper reviews current knowledge concerning the interactions 
between AMF and PGPR with plants and discusses on enhanced nutrient availability, biocontrol, abiotic 
stress tolerance and phytoremediation in sustainable agriculture.
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Introduction

Agriculture is the largest interface between humans and 
the environment, merging crop production and environ-
mental consistency (Robertson and Swinton, 2005). Global 
population is projected to be 30% larger than at present 
by 2030 and global food demand is to be doubled 
(Alexandratos, 1999). Fertilization in excess to increase 
crop production resulted in environmental degradation, 
loss of biodiversity, loss of ecosystem services, emergence 
of pathogens, and reduced the soil stability for agricultural 
production (Tilman et al., 2002). Using chemicals in 
agriculture remains a greater challenge as it does not 
compromise environmental integrity (Tilman et al., 2001) 
and public health (Loreau et al., 2001). 

Bioinoculants containing living or latent cells of micro-
organisms could be an effective alternative for chemicals 
in food production (Hedge et al., 1999). Bioinoculants 
have the ability to convert nutritionally important elements 
to available forms through biological processes (Vessey, 
2003). However, biofertilizer containing single inoculants 
fail to perform well under field conditions and are vulnerable 
to predation of native rhizosphere microflora (Hedge et 
al., 1999). The addition of bioinoculants can be useful 
in active rhizosphere management by maintaining the 
beneficial microfloral populations. In rhizosphere the 
interactions can be classified into four main groups: (1) 
plant-plant interactions leading to the nutrient competition 
in rhizosphere; (2) root-microorganism interactions, deter-
mined by plant root exudates (rhizosphere effect); (3) 
fungi-bacteria interactions, which include both synergistic 
and antagonistic activities; and (4) interactions among 
bacteria- fungi- plant (tripartite interaction), a mutual 
interaction in which all the partners are benefited.

Review
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Fig. 1. Beneficial effects of plant growth promoting rhizobacteria in the rhizosphere of plants. A; Nitrogen fixation by symbiotic, 
associative symbiotic and free living diazotrophs; B; Unavailable form of mineral will be solubilized by microorganism and 
increasing availability to plants; C; Creation of iron depletion zone in rhizosphere for plant pathogens; D; ACC deaminase (ACCD) 
will block the ethylene synthesis pathway by hydrolysis of ACC (precursor for ethylene synthesis) into ammonia and α-ketobutyrate. 

Co-inoculation comprising the combination of more 
than one microorganism promotes plant growth by various 
mechanisms (Bashan et al., 2004; Cattelan et al., 1999; 
Rodriguez et al., 2006). One of the most commonly 
reported plant growth promotion mechanism by bacteria is 
the morphological and physiological changes of the root 
system (Sarig et al., 1992), increased lateral roots and root 
hairs facilitate more nutrients and water absorption. Higher 
water and nutrient uptake by roots cause improved water 
status of plant, which in turn could be the main factor for 
enhancing plant growth (Wu et al., 2005). Increasing 
nutrient uptake such as NO3

–, NH4
+, PO4

2+, K+, Rb+ and 
Fe2+ in the various inoculated plants have been reported 
(Bai et al., 2003; Morgenstern and Okon, 1987; Murty 
and Ladha, 1988; Sarig et al., 1988). Co-inoculation of 
Azotobacter, Azospirillum and Streptomyces increased 
P, Mg and N content in wheat grains compared to single 
inoculation (Elshanshoury, 1995). Among co-inoculation 
plant growth promoting rhizobacteria and arbuscular 
mycorrhizal fungi combination is considered to be more 
beneficial for plant growth, and nutrient acquisition (Barea 
et al., 2002), inhibition of plant pathogenic fungi (Budi 
et al., 1999), enhancement of root branching and phyto-
remediation (Gamalero et al., 2004).

The synergistic effects of PGPR and mycorrhizal 
fungi have gained more importance in the last two 
decades for its beneficial effects to many crops, in terms of 
biocontrol efficiency, improvement of nutrient absorption, 
and phytoremediation. Information related to the com-

plicated mechanism of interaction between PGPR and 
AMF in the rhizosphere is scarce. One of such mechanisms 
evolved by Carpenter et al. (1995) is that some bacteria 
directly affect AM fungal germination and facilitates plant 
growth promotion through the AM association. Another 
possible mechanism is the increased root cell permeability 
by bacteria for AMF colonization thereby positively infl
uencing the physiology of plants. Moreover, bacterial 
symbiosis with mycorrhiza enhances the survivability of 
bacteria in stressed conditions (Vivas et al., 2003). 

Knowledge regarding AMF and PGPR interactions and 
with the host plants is essential for sustainable agriculture. 
This make farming relied on biological processes and 
resources, rather than the use of chemicals for maintaining 
soil fertility and plant growth (Artursson et al., 2006). This 
review discusses the PGPR-AMF synergistic interactions 
in the rhizosphere region and their beneficial effects on 
plant growth. The role of PGPR-AMF interactions in nutrient 
uptake, biocontrol efficiency, abiotic stress management 
and phytoremediation are also discussed.

PGPR

PGPR are a heterogeneous group of bacteria that can be 
found in the rhizosphere, at root surface and in association 
with roots, which can improve plant growth directly 
and/or indirectly (Kloepper et al., 1989). During the last 
few decades PGPR has been employed in agriculture 
to improve nutrient availability, stress tolerance (Fig. 1) 
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Table 1. Application of PGPR strains with different plant growth promoting traits and their application in agricultural crops. 

Plant species PGPR microorganism PGP activity Growth parameters References

Apple
Bacillus M3, Bacillus
OSU-142 and
Microbacterium FS01

Nitrogen fixation 
and phosphate 
solubilization

26-88% yield increase 
over control Karlidag et al., 2007

Cotton Bacillus subtilis FZB 24
IAA production, 
phytase activity and 
antibiotic production

31% yield increase 
over control Yao et al., 2008

Maize

Pseudomonas 
fluorescens (MPp4), 
Burkholderia (MBp1, 
MBf21 and MBf15)

IAA production and 
antagonism against 
Fusarium
verticillioides

Increased shoot fresh 
weight- 24-32%; root 
fresh weight -76-88% 
over control and 
diseases reduction 60-87% 

Hernandez - 
Rodriguez et al., 2008

Raspberry Bacillus M3
Nitrogen fixation 
and phosphate 
solubilization

Increased cane length- 
13%; number of 
berries-25%;

Orhan et al., 2006

Rice

A. brasilense CW 903, 
Burkholderia pyrrocinia
CBPB–HOD, 
Methylobacterium
oryzae CBMB20

IAA production P 
solubilization and N 
fixation

Increased shoot length-
1.5-8.5%; root length-
20-31% over control

Madhaiyan et al., 2010

Sorghum

B. cereus (KBE7-8)
B. cereus (NAS4-3) and 
Stenotrophomonas
maltophilia (KBS9-B)

Siderophore 
production, IAA 
production and P 
solubilization

 
Increased shoot fresh 
weight-1133-2255% 
over control

Idris et al., 2009

Tomato

A. brasilense CW903, 
Burkholderia pyrrocinia
CBPB–HOD,
Methylobacteriym
oryzae CBMB20

IAA production, P 
solubilization and N 
fixation

Increased shoot length- 
8-13% and root length- 
1-13% over control 

Madhaiyan et al., 2010

and sustainability of production. A large number of 
plant growth-promoting bacteria including Azotobacter, 
Azospirillum, Bacillus, Pseudomonas, Rhizobium and 
Methylobacterium have been isolated and characterized in 
terms of their plant growth promotion abilities (Dobbelaere 
et al., 2003; Poonguzhali et al., 2008; Ryu et al., 2006). 
Significant increase in growth and yield in response to 
PGPR inoculation has been reported among numerous 
agronomically important crops (Araujo, 2008; Figueiredo 
et al., 2008; Madhaiyan et al., 2006; Madhaiyan et al., 
2007; Silva et al., 2006; Yim et al., 2009). These PGPR 
may exist within the plant tissues (bacterial endophytes) with 
the highest concentrations of microorganisms typically 
found in the rhizosphere. Recent works on the applications 
of PGPR strains with different plant growth promoting 
traits in agricultural crops are listed in Table 1.

AMF

The term ‘mycorrhiza’ is derived from two Greek words 

mykes, meaning fungus and rhiza, meaning root. It was 
first employed by Frank (1885) to describe a situation 
where ‘certain tree species consistently do not feed 
themselves independently in the soil but establish a 
symbiosis with a fungal mycelium which takes over the 
entire nourishment of the tree from the soil’. Based on its 
morphological characteristics, mycorrhizal fungi can be 
classified into seven different categories like arbuscular 
mycorrhiza, ericoid mycorrhiza, ectomycorrhiza, orchid 
mycorrhiza, monotropoid mycorrhiza, arbutoid mycorrhiza 
and ectendomycorrhiza (Table 2). 

AMF are a key functional group of the soil biota that can 
contribute to crop productivity and ecosystem sustainability. 
AMF symbiosis occurs among a wide range of plants, 
ranging over 250,000 species, but only 150–200 species of 
AMF have been distinguished on the basis of morphology 
with DNA-based studies suggesting even more (Santos et 
al., 2006). AMF can interact with different bacterial 
species. These interactions occur in the root zone and fungal 
hyphae, commonly referred to as ‘mycorrhizosphere’ 
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Table 2. Classification of mycorrhizal fungi based on morphological characters (Smith and Read, 1997).

Characters AM Ecto Ectendo Ericoid Arbutoid Monotropoid Orchid 
Septation aseptate septate septate septate septate septate septate
Intracellular
colonisation + - + + + + +

Fungal 
sheath - + + or - - + or - + -

Hartig net - + + - + + -
Vesicles + or - - - - - - -

Fungal taxa Zygomycetes Basidiomycetes/ 
Ascomycetes

Basidiomycetes/ 
Ascomycetes

(Zygomycetes)
Ascomycetes Basidiomycetes

Plant taxa

Bryophytes
Pteridophytes
Gymnosperms
Angiosperms

Gymnosperms
Angiosperms

Gymnosperms
Angiosperms

Ericales
Bryophytes Ericales Monotrop-aceae Orchid-aceae

(+) - Present; (-) - Absent

Fig. 2. Zone of coverage by rhizosphere and mycorrhizosphere in the soil around the root. Mycorrhizosphere region increases 
microbial activity and helps in increased nutrient absorption compared to the rhizosphere region.

(Rambelli, 1973). Compared to the rhizosphere region of 
the plant the mycorrhizosphere has increased the area of 
the rhizosphere by extending the mycelium of the fungus 
(Fig. 2). The mycorrhizosphere helps in enhanced nutrient 
absorption, soil stability and water retention efficiency 
(Bedini et al., 2009), biocontrol ability (Utkhede, 2006), 
improved secondary metabolite synthesis (Lee and Scagel, 
2009), tolerance to abiotic stress (Marulanda et al., 2006), 
phytoremediation (Gamalero et al., 2009) and phosphate 
mobilization. The beneficial effects of AMF on soil health 
are essential for the sustainable management of agricultural 
ecosystems (Barrios, 2007; Jeffries et al., 2003). 

Association Mechanisms of AMF and PGPR

Alteration in the composition of root exudates is the 
most important physiological change that occurs during 
AM root colonization of plants (Azaizeh et al., 1995). This 
chemical alteration in the rhizosphere of mycorrhizal 
plants is responsible for the bacterial community change, 
resulting in the mycorrhizosphere effect (Linderman, 
1988). PGPR are reported to play a significant role in the 
establishment of AM symbiosis with host plant growth 
(Marschner and Timonen, 2005). Bacteria may be found 
adhering to the AM hyphae (Bianciotto et al., 1996a) as 
well as embedded within the AM spore walls (Walley and 
Germida, 1996) (Fig. 3). Bacteria adhering to the AM 
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Fig. 3. Schematic view of bacteria associated with arbuscular 
mycorrhizal fungi. Mycorrhiza helper bacteria are associated 
in the hyphosphere (region around hyphae) while endosymbiotic 
bacteria are harbored inside the spores.

mycelium get benefited by feeding on hyphal exudates 
and/or use the mycelium as a vehicle for colonization of 
the rhizosphere (Bianciotto et al., 1996a). Paenibacillus, 
known for its antagonistic activity over a broad range of 
root pathogens, is capable of stimulating mycorrhizal 
colonization in sorghum (Budi et al., 1999). Furthermore, 
Budi et al. (1999) reported an increase in total bacterial 
population, including nitrogen fixers and beneficial gram- 
negative bacteria in the rhizosphere of mycorrhizal plants. 
Ravnskov and Jakobsen (1999) reported an increase in 
the total number of bacteria in both rhizosphere and 
hyphosphere (region around the hyphae) by the AM 
fungus Glomus intraradices.

PGPR are known to enhance AM fungal growth, by 
supporting the spore germination and mycelia extension 
of AMF (Xavier and Germida, 2003). Hildebrandt et al. 
(2002) reported that Paenibacillus validus under in vitro 
conditions supported the mycelial growth of G. intraradices 
in the absence of a host root, through the production of 
sugars such as raffinose (Hildebrandt et al., 2006). Nutrient 
exchange occur between PGPR and AM fungi by close 
contact (Artursson et al., 2006), and these bacteria are 
considered to be mycorrhiza helper bacteria (MHB) 
(Garbaye, 1994). MHB stimulates AM propagule germi-
nation, hyphal growth and root colonization (Mayo et al., 
1986; Vosatka and Gryndler, 1999; Xavier and Germida, 
2003) Further studies by Ludwig-Muller and Guther 
(2007) showed an increased auxin level in mycorrhizal 
plants suggested that these hormones could be a signals for 
the AM colonization process (Meixner et al., 2005).

The widespread AMF are unique in hosting bacteria in 
their cytoplasm and these intracellular structures are found 

to have similarity with bacteria and bacteria like organisms 
(BLOs) (Mosse, 1970). Ultrastructural observation of field 
collected AMF isolates clearly divulged the presence of 
bacteria in the spores. Morphological observations (electron 
and confocal microscopy) and molecular analyses were 
used to identify BLOs and their symbiotic relationship 
with AMF (Bianciotto et al., 1996a). Gigaspora margarita 
BEG 34 spores showed the presence of large number of 
BLOs detected by staining with fluorescent dyes specific 
for bacteria and capable of distinguishing between live 
and dead bacteria (Bianciotto et al., 1996a). Bonfante et al. 
(1994) based on ultrastructural observations performed on 
high-pressure freezing/freeze-substituted samples showed 
large number of rod-shaped BLOs in the germinating spores. 
On the basis of the 16S rDNA sequences, the bacterial 
endosymbionts living in the fungus G. margarita (BEG 
34) were identified and reported to belong to the genus 
Burkholderia (Bianciotto et al., 1996b). Minerdi et al. 
(2001) reported that the endosymbionts of AMF have nif 
genes, which are responsible for nitrogen fixation and are 
also capable of nutrient exchange. 

Bianciotto et al. (2001) reported the role of surface 
components in the physical interactions between beneficial 
rhizosphere bacteria and the AMF. Bacterial extracellular 
polymeric substance (EPS) plays a significant role in the 
attachment of PGPRs to AM fungal structures and roots. 
Mutants of A. brasilense and R. leguminosarum strains 
impaired in EPS failed to colonize AM fungal structures 
and spores when compared with Pseudomonas fluorescens 
strains with an increased production of EPS. In vitro assay 
confirmed the attachment of EPS bacteria to transformed 
mycorrhizal carrot roots and AM hyphae (Bianciotto et al., 
2001). EPS also play a general role in the protection of 
bacteria against desiccation (Ophir and Gutnick, 1994). 
These studies demonstrate that EPS is involved in the 
attachment of bacteria to both the surfaces (roots and 
fungal hyphae) and biofilm formation to enhance their 
survivability under limiting environments. 

Co-inoculation Effect of AMF and PGPR

It has also been suggested that PGPR possess a wide 
variety of mechanisms to support mycorhizal symbiosis. 
Their interaction with AMF is involved in plant growth 
promotion and plant protection (Behl et al., 2003; Sanchez 
et al., 2004; Xavier and Germida, 2003). On the other 
hand, mycorrhizal colonization influences soil microbial 
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Table 3. Co-inoculation effect of AMF and PGPR on plant growth enhancement and stress tolerance. 

Plant species AMF partner PGPR partner Application Reference

Lycopersicon 
esculentum Glomus intraradices Pseudomonas fluorescens,

Enterobacter cloaceae

Reduction of Fusarium
oxysporium -58% over
control

Akkopru and 
Demir, 2005

Glycine max G. clarum or
Gi. margarita.

Bradyrhizobium 
japonicum

Increased nodules number - 
1135.13% over control in 
undisturbed soil

Antunes et al., 2006

Trifolium repens Glomus mosseae Brevibacillus brevis

Increased shoot dry weight -
189.23%; root dry weight - 
200% at 270 mg NiSo4 kg-1 

of soil and reduced nickel
accumulation -703.5% in plant

Vivas et al., 2006a

Cicer arietinum Glomus intraradices, Rhizobium sp. and 
Pseudomonas straita

Reduced nematode 
population -270%; no. of 
galls -258.8% 

Sayeed and Siddiqui, 
2008

Capsicum 
chinense multi-strain AMF

Azotobacter 
chroococcum and 
Azospirillum brasilense

Increased no. of leaves - 
44.4%; plant height - 
15.74%; fresh weight - 
16.33%; no. of branches - 
112.12% over control

Constantino et al., 2008

Cucumis sativum Gi. rosea BEG9 Pseudomonas putida

Increase root fresh weight - 
61.1%; shoot dry weight -
105.6%; shoot length - 
39.7%; total leaf projected 
area- 131.5% over control

Gamalero et al., 2008

Capsicum annuum 

Mixed inoculation of 
Acaulospora longula,
G. sclarum and
G. intraradiaces.

Methylobacterium 
oryzae CBMB20 
and Methylobacterium
oryzae CBMB110

Increased shoot dry weight -
16.84%; root dry weight - 
20% over control N, P, K in 
shoot 22.79%, 29.37%, 36.71% 
respectively 

Kim et al., 2010

Carthamus 
tinctorius G. intraradices Azotobacter chroococcum

Increased root dry weight - 
8.47%; grain yield - 5.20% 
over control

Mirzakhani et al., 2009

Sesamum indicum G. fasciculatum,
Acaulospora laevis Pseudomonas striata

Increased shoot length -
140.75%; root length - 
459.4% and P uptake -
361.5% over control

Sabannavar and 
Lakshman 2009

Phaseolus 
vulgaris 

G. mosseae,
G. intraradices

Rhizobium tropici 899,
Rhizobium 912

Increased in shoot dry weight - 
5%; pod dry weight - 155.26%; 
total dry weight - 24% at 75% 
soil water capacity

Franzini et al., 2010

Lycopersicon 
esculentum

G. intaradices,
G. mossea, 
G. setunicatum

Pseudomonas 
putida, Azotobacter
chroococcum and 
Azosprillum lipoferum

Increased antioxidant 
activity - 5.84%,
lycopene - 67.89% and 
potassium contents - 27.95% 
over control

Ordookhani et al., 2010

Lactuca sativa G. mosseae Pseudomonas mendocina

Increased shoot dry biomass - 
46.98%; root dry biomass - 
92.30% over control at 4 g 
NaCl kg-1 of soil

Kohler et al., 2010

Triticum aestivum G. mosseae
Paenibacillus 
polymyxa and 
Paenibacillus brasilensis

Increased shoot length - 
11.42%; shoot dry weight - 
44.73% over control

Arthurson et al., 2011

Lycopersicon 
esculentum G. mossea

Pseudomonas 
putida, Azotobacter 
chroococcum

Increased lycopene - 
102.30%; antioxidant - 
44.7% and total soluble 
solid - 89.21% over control

Ordookhani and Zare, 
2011

Oryza sativa G. intraradices Azospirillum
brasilense

Increased shoot height - 
40.90%; photosynthetic 
efficiency - 39.9% over 
control in drought stress

Ruíz-Sáncheza et al., 
2011

Glycine max G. mosseae Bradyrhizobium sp. 
BXYD3

Increased N content in plant - 
136.70%; P content - 
178.97%; shoot dry weight - 
166% over control

Wang et al., 2011
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Fig. 4. Schematic diagram showing P mobilization of arbuscular 
mycorrhizal fungi colonized plant root. Fungal hyphae will 
help mobilize the soluble P from the distance where plant 
roots cannot reach.

interaction. Possible modification of the root exudates by 
mycorrhizal fungus may act as a considerable carbon sink 
for photo-assimilation through hyphal exudation. This 
may be expected to lead to changes in both qualitative and 
quantitative release of exudates into the rhizosphere, and 
consequently, an alteration in microbial populations in the 
rhizosphere then occurs (Hodge, 2000; Johansson et al., 
2004). Recent developments on the co-inoculation of 
AMF and PGPR are summarized in Table 3. Well studied 
co-inoculation effect of AMF and PGPR on crop growth 
improvements are discussed below.

Increase of nutrient availability   Nitrogen-fixing PGPR 
improves the bioavailability of nitrogen to plants, and this 
availability may be enhanced when plants are colonized 
by AMF (Barea et al., 2002). AM fungal infection rate 
and their impact on mineral nutrition and root nodule 
symbioses are typically synergistic in nature. Nitrogen fi
xation rates in Rhizobium meliloti inoculated mycorrhizal 
alfalfa plants were higher than the corresponding rates in 
non-mycorrhizal plants as quantified by the use of isotope 
technique (Toro et al., 1998). Smith and Read (1997) and 
Karandashov and Bucher (2005) reported enhanced N2- 
fixing ability in mycorrhizal plants compared with non- 
mycorrhizal plants. Combined inoculation of G. clarum and 
B. japonicum increased the nitrogen fixation in soybean 
compared to single inoculation of Bradirhizobium japonicum 
(Antunes et al., 2006). Similar results were obtained by 
Tian et al. (2003) by using G. caledonium and Rhizobium 
sp., which showed increased ARA (Acetylene Reduction 
Assay, which is regarded as indirect measurement for 
nitrogen fixing ability of diazotrophs) in co-inoculated 
treatment than other treatments. 

Bacteria may also support the AM symbiosis by increasing 
bio available phosphate since P will be solubilized by 
organic acids produced by plant and bacteria for enhanced 
uptake by root hairs. Available P concentration is very low 
in the non-rhizosphere region because of less microbial 
activity. Mycorrhizal fungi can help the plants to scavenge 
the P beyond their rhizosphere region and make them 
available to the plants (Fig. 4). Organic P is largely unavailable 
to plants until it is converted to inorganic form by phosphate 
solubilizing bacteria. Increased level of solubilized P after 
mineralization by bacteria results in localized increase in 
the concentration of phosphate ions in soil, which is taken 
up by AMF and stored in the vesicles than released when P 
starvation occur (Smith and Read, 1997). 

Kohler et al. (2007) reported that the synergistic inter-

actions between phosphate-solubilizing bacteria B. subtilis 
and AMF G. intraradices resulted in high phosphatase 
activity and enhanced available P in the soil (Arthurson 
et al., 2011). Toro et al. (1997) using 32P isotopic dilution 
approaches reported that AMF and phosphate-solubilizing 
bacteria interacted under P limiting conditions to make P 
available to plants, and found that dually inoculated plants 
displayed lower specific activities (32P/31P) than control 
plants.

Nutrient uptake   Synergistic interactions of AMF with 
N2 fixing or P solubilizing PGPR help in plant development 
and growth (Puppi et al., 1994). Increase in P content in 
plants along with modification in root architecture was 
observed in plants co-inoculated with either P. fluorescens 
92 or P. fluorescens P190r and G. mosseae BEG12 due to 
greater absorptive surface and enhanced mycelial devel-
opment in G. mosseae BEG12 (Gamalero et al., 2004). 
Yusran et al. (2009) observed enhanced uptake of Mn, 
Zn, and P due to combined inoculation of Pseudomonas 
sp., Bacillus amyloliquefaciens FZB42 and AMF. Similarly 
increased N, P, S, Zn, Mn and Cu uptake by R. leguminosarum 
inoculation with mixed inoculum of AMF containing 
Gigaspora albida, Glomus intraradices and Acaulospora 
scrobiculata spores in Indian rosewood (Bisht et al., 2009).

Combined bioinoculation had resulted in significant 
increase in grain quality and the P, Fe content in grains 
compared to uninoculated control (Roesti et al., 2006). Kim 
et al. (2010) reported an enhanced macro (nitrogen, phos-
phorus, potassium, calcium, magnesium) and micro (zinc, 
copper, iron, magnesium) nutrients in red pepper plants 
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co-inoculated with Methylobacterium oryzae CBMB110 
and AMF. 

Biotic stress tolerance   Synergism between PGPR and 
AMF in the mycorrhizosphere also plays a major role 
in activation of plant defense mechanisms (Demir and 
Akkopru, 2005; Linderman, 1994). Akkopru and Demir 
(2005) used single and dual inoculation of biocontrol 
agents like P. fluorescens, E. cloaceae, P. putida with G. 
intraradices against Fusarium oxysporum f. sp. lycopersici 
(FOL) and observed effective inhibition of FOL (up to 
15.2-30.4%) along with increased root dry weight (107% 
increase) compared to uninoculated control. Souchie et al. 
(2003) reported the dual application of AMF and PGPR 
inhibited the pathogen more efficiently and reduced 
infections (Hazarika and Phookan, 2003) compared to 
single applications. 

Sayeed and Siddiqui (2008) reported that AM fungus 
can coexist along with root nodule bacterium without 
exhibiting adverse effects on each other. Furthermore, 
they reported that it could be used as a biocontrol agent 
to control most of the soil-borne diseases. Combined use 
of Rhizobium, G. intraradices and P. striata strains are 
reported to control root-rot disease of chickpea. Combined 
inoculated plants showed largest reduction in nematode 
(M. incognita) population than single inoculations (Sayeed 
and Siddiqui, 2008). The combination of P. fluorescens 
and AMF also showed reduction in disease intensity in 
wheat plants (Behn, 2008). Berta et al. (2003) stated that 
a dual application of both AMF and PGPR is effective 
inhibition of Rhizoctonia solani in tomato.

Dwivedi et al. (2009) tested antifungal compounds like 
phenazine and diacetylphloroglucinol (DAPG) produced 
by P. fluorescens, along with AMF and reported that 
DAPG production has a positive influence on mycorrhizal 
colonization. Furthermore, they reported that phenazine 
positive treatment showed significant decrease in AMF 
colonization compared to DAPG treatment. 

Abiotic stress tolerance   Arid and semi-arid areas face 
serious problems such as drought, salinity, heavy metals 
and heat which are cause for the production losses (Evelin 
et al., 2009). PGPR inoculation may help to improve crop 
resistance against abiotic stress conditions. EPS produced 
by P. mendocina (Kohler et al., 2006) bind to soil cations 
including Na and reduce the Na available for plant uptake. 
Glycoprotein (glomalin) produced by AMF can act as an 

insoluble glue to stabilize aggregates (Wright and Anderson, 
2000). Co-inoculation of P. mendocina and Glomus mosseae 
showed increased aggregate stability (%) and GRSP (µg g-1 
of soil) compared to single inoculation under salt affected 
conditions (Kohler et al., 2010). AMF with native bacterial 
population can alleviate salinity stress in olive tree plant-
ations in Spain or in North Africa arid region where palm 
yields are considerably affected by drought and soil 
salinity (Porras-Soriano et al., 2009).

Drought is a major limitation for crop production in 
rain-fed ecosystems that lowers yield potential (Jongdee 
et al., 2002). Synergistic effect of co-inoculated bacteria 
and AMF help in restoring plant growth under drought 
conditions (Marulanda et al., 2008, 2009). The use of 
indigenous drought-tolerant G. intraradices strain along 
with native bacterium reduced 42% water requirement 
for the production of Retama sphaerocarpa (Marulanda 
et al., 2006). 

Positive interactions between P. putida or Bacillus 
megaterium and AMF in stimulating plant growth and 
drought tolerance have been reported by Marulanda et al. 
(2009). Under well-watered conditions, AMF plants have 
500% increased shoot fresh weight (SFW) compared to 
uninoculated control plants. Interestingly, these AMF plants 
co-inoculated with Azospirillum showed a further increase 
of 12% in SFW. In drought stressed conditions, combined 
inoculation of AMF and Azospirillum increased SFW by 
103% compared to the uninoculated control (Ruíz-Sáncheza 
et al., 2011). Similar results were also observed by Franzini 
et al. (2010) in co-inoculation of AMF with Rhizobium in 
Phaseolus vulgaris under drought stressed conditions.

ACC is the precursor for ethylene synthesis in plant; 
bacterial ACC deaminase cleaves the ACC to ammonia 
and α-ketobutyrate, thereby lowering ethylene levels in 
plant (Glick et al., 1998). The plant hormone ethylene 
regulates several phases of plant growth (i.e. fruit ripening, 
flower senescence), and is mainly involved in plant responses 
to biotic and abiotic stresses (Abeles et al., 1992). Lowering 
of plant ethylene levels is essential during early stages of 
plant development and when exposed to environmental 
stresses like drought and salinity (Glick, 2004). Combined 
inoculation of ACC deaminase positive Psudomonas putida 
and Gigaspora rosea showed increased plant growth and 
improved root architecture (Gamalero et al., 2008). Their 
results showed that ACC deaminase producing PGPR 
strain along AMF can improve the survivability of plants 
under stressed conditions.
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Phytoremediation   The biosphere can be polluted by 
heavy metals due to mining, smelting, wide usage of agro- 
chemicals and sewage sludge. This pollution leads to the 
contamination of soil and water causing threat to human 
and animal welfare, health, and disruptions of natural 
ecosystems (He et al., 2005). Heavy metals like Pb, Cr, As, 
Cu, Cd and Hg added to the soil persist in soils and can 
either be adsorbed in soil particles or leached into ground 
water (Vivas et al., 2003). Continuous exposure of these 
metals through ingestion of contaminated food or uptake 
of drinking water can lead to accumulation in humans, 
plants and animals. 

It is possible to improve the phytoremediation capabilities 
by inoculating plant with appropriate AMF and PGPR. 
Brevibacillus sp. one of the most Cd tolerant bacterial 
strain, in symbiosis with AMF enhanced nodulation, N and 
P uptake and improved Cd stress tolerance in Trifolium 
repens. Further studies using Ni-tolerant Brevibacillus 
brevis strain along with AMF reduced nickel toxicity in plant 
(Vivas et al., 2003). Vivas et al. (2006a) used Brevibacillus 
brevis, Rhizobium trifolii, and Glomus mosseae as a single 
and co-inoculation with different Ni concentrations 30 
(Ni I), 90 (Ni II) and 270 (Ni III) mg NiSO4 kg-1 of soil. 
Coinoculation of these microorganisms reduced plant Ni 
concentrations by 4.9 (Ni I), 6.4 (Ni II) and 6.0 (Ni III) fold 
compared with non-treated control plants. The microbial 
activity changed depending on the available Ni in soil and 
these treatments show increased P uptake in Trifolium 
plants by more than ten times (Ni I and Ni II). 

Vivas et al. (2006b) reported Brevibacillus sp. along 
with co-inoculation of indigenous AMF isolated from 
Zn contaminated soil reduced Zn uptake and promoted 
growth in Trifolium repens plant. Brevibacterium sp. 
isolated from Ni, Cd and Zn contaminated sites showed 
higher PGPR activity and also acted as mycorrhizal helper 
bacteria. AMF provided an adaptable environment in the 
mycorrhizosphere for Bravibacterium sp. by secreting a 
stimulant and involved in the modification of root exudate 
composition for its better survivability in root zone. 

Conclusion

AM are ubiquitous and is known to colonize more than 
80 percent of plants in nature. For understanding the role 
of AMF in rhizosphere and their interactions with PGPR 
and host plant, we must understand the mycorrhizosphere 
region. i.e., mycorrhizosphere is the rule, not the exception. 

Although the composition of microbial communities in 
the various parts of mycorrhizosphere has been studied 
extensively in different ecosystems the underlying mech-
anisms behind the interactions on the mycorrhizosphere 
are poorly understood. The proposed mechanisms of 
interactions still need further experimental confirmation. 
More insight into these mechanisms will enable optimization 
of the effective use of AMF in combination with their 
bacterial partners as a tool for increasing crop yields. This 
could be achieved through greater collaborative efforts 
between biologists, soil chemists and physicists. More 
extensive field investigations on co-inoculation of AMF 
with PGPR will make this a popular technology among 
field workers in agriculture, forestry and horticulture. It is 
anticipated that future commercial bioinoculants would 
contain AMF in addition to PGPR.
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