참고문헌
- Appleby, J.L., J.S. Parkinson, and R.B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less travelled. Cell 86:845-848. https://doi.org/10.1016/S0092-8674(00)80158-0
- Araki, T. 1992. An analysis of the effect of changes in growth temperature on proteolysis in vivo in the psychrophilic bacterium Vibrio sp. strain ANT-300. J. Gen. Microbiol. 138: 2075-2082. https://doi.org/10.1099/00221287-138-10-2075
- Barka, E.A., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phyto firmans strain PsJN. Appl. Environ. Microbiol. 72:7246-7252. https://doi.org/10.1128/AEM.01047-06
- Beck, E.H., R. Heim, and J. Hansen. 2004. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29:449-459. https://doi.org/10.1007/BF02712118
- Bordeleau, L.M. and D. Prevost. 1994. Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115-125. https://doi.org/10.1007/BF02183092
- Boyer, J.S. 1982. Plant productivity and environment. Science 218:443-448. https://doi.org/10.1126/science.218.4571.443
- Carpousis, A.J. 2002. The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multienyzme complexes. Biochem. Soc. Trans. 30:150-155.
- Chattopadhyay, M.K. 2000. Cold adaptation of Antarctic microorganisms - possible involvement of viable but nonculturable state. Polar Biol. 23:223-224. https://doi.org/10.1007/s003000050030
- Chattopadhyay, M.K. 2006. Mechanism of bacterial adaptation to low temperature. J. Biosci. 31:157-165. https://doi.org/10.1007/BF02705244
- Chattopadhyay, M.K. 2002. The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol. 10:311.
- Chattopadhyay, M.K. and M.V. Jagannadham. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 24: 386-388. https://doi.org/10.1007/s003000100232
- Cheng, Z., E. Park, and B.R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53:912-918. https://doi.org/10.1139/W07-050
- Chu, J., X. Yao, and Z. Zhang. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 136:355-363. https://doi.org/10.1007/s12011-009-8542-3
-
Coker, J.A., P.P. Sheridan, J. Loveland-Curtze, K.R. Gutshall, A.J. Auman, and J.E. Brenchley. 2003. Biochemical characterization of a
$\beta$ -galatosidase with a low optimum obtained from an Antarctic Arthrobacter isolate. J. Bacteriol. 185:5473-5482. https://doi.org/10.1128/JB.185.18.5473-5482.2003 - D'Amico, S., P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M.A. Meuwis, G. Feller, and C. Gerday. 2002. Molecular basis of cold adaptation. Phil. Trans. R. Soc. Lond. B. 357:917-925. https://doi.org/10.1098/rstb.2002.1105
- Duman, J.G. and T.M. Olsen. 1993. Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322-328. https://doi.org/10.1006/cryo.1993.1031
- Egamberdiyeva, D. and G. Hoflich. 2003. Influence of growthpromoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35:973-978. https://doi.org/10.1016/S0038-0717(03)00158-5
- Ercolini, D., F. Russo, A. Nasi, P. Ferranti, and F. Villani. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75:1990-2001. https://doi.org/10.1128/AEM.02762-08
- Feller, G. and C. Gerday. 2003. Psychrophilic enzymes: hot topic in cold adaptation. Nat. Rev. Microbiol.1:200-208. https://doi.org/10.1038/nrmicro773
- Fowler, S. and M.F. Thomashow. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675-1690. https://doi.org/10.1105/tpc.003483
- Franks, F. 1985. Biophysics and biochemistry at low temperatures. Cambridge University Press, New York.
- Gianese, G., P. Argos, and S. Pascarella. 2001. Structural adaptation of enzymes to low temperatures. Protein Eng. 14:141-148. https://doi.org/10.1093/protein/14.3.141
-
Gilbert, J.A., P.L. Davies, and J. Laybourn-Parry. 2005. A hyperactive
$Ca^{2+}$ -dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol. Lett. 245:67-72. https://doi.org/10.1016/j.femsle.2005.02.022 - Gilbert, J.A., P.J. Hill, C.E.R. Dodd, and J. Laybourn-Parry. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiol. 150:171-180. https://doi.org/10.1099/mic.0.26610-0
- Goldstein, J., N.S. Pollitt, and M. Inouye. 1990. Major coldshock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA. 87:283-287. https://doi.org/10.1073/pnas.87.1.283
- Gow, J.A. and F.H.J. Mills. 1984. Pragmatic criteria to distinguish psychrophiles and psychrotrophs in ecological systems. Appl. Environ. Microbiol. 47:213-215.
- Graumann, P.L. and M.A. Marahiel. 1999. Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:203-209.
- Gruszecki, W.I. and K. Strzałka. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 1740:108-115. https://doi.org/10.1016/j.bbadis.2004.11.015
- Gulati, A., P. Vyas, P. Rahi, and R.C. Kasana. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58:71-377.
- Guy, C.L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:187-223. https://doi.org/10.1146/annurev.pp.41.060190.001155
- Hebraud, M. and P. Potier. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1:211-219.
- Heipieper, H.J., F. Meinhardt, and A. Segura. 2003. The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology, and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229:1-7. https://doi.org/10.1016/S0378-1097(03)00792-4
- Horn, G., W. Hofweber, W. Kremer, and H.R. Kalbitzer. 2007. Structure and function of bacterial cold shock proteins. Cell. Mol. Life. Sci. 64:1457-1470. https://doi.org/10.1007/s00018-007-6388-4
- Huston, A.L., B. Methe, and J.W. Deming. 2004. Purification, characterization and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70: 3321-3328. https://doi.org/10.1128/AEM.70.6.3321-3328.2004
- Jagannadham, M.V., M.K. Chattopadhayay, and S. Shivaji. 1996. The major carotenoid pigment of a psychrophilic Micrococcus roseus strain: fluorescence properties of the pigment and its binding to membranes. Biochem. Biophys. Res. Commun. 220: 724-728. https://doi.org/10.1006/bbrc.1996.0471
- Jagannadham, M.V., M.K. Chattopadhayay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C.M. Rao, and S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium Sphingobacterium antarcticus and a mesophilic bacterium Sphingobacterium multivorum. Arch. Microbiol. 173:418-424. https://doi.org/10.1007/s002030000163
- Jagtap, P. and M.K. Ray. 1999. Studies on the cytoplasmic protein tyrosine kinase activity of the Antarctic psychrophilic bacterium Pseudomonas syringae. FEMS Microbiol. Lett. 173:379-388. https://doi.org/10.1111/j.1574-6968.1999.tb13529.x
- Johns, G.C. and G.N. Somero. 2004. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol. Biol. Evol. 21:314-320.
- Jones, P.G., R. Krah, S.R. Tafuri, and A.P. Wolve. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174:5798-5802.
- Kaneda, T. 1991. Iso- and anteiso- fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol. Rev. 55:288-302.
- Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287-291. https://doi.org/10.1038/7036
- Katiyar, V. and R. Goel. 2004. Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul. 42:239-244. https://doi.org/10.1023/B:GROW.0000026477.10681.d2
- Kaushik, R., A.K. Saxena, and K.V.B.R. Tilak. 2002. Can Azospirillum strains capable of growing at a sub-optimal temperature perform better in field-grown-wheat rhizosphere. Biol. Fertil. Soils 35:92-95. https://doi.org/10.1007/s00374-002-0444-x
- Kawahara, H. 2002. The structures and functions of ice crystalcontrolling proteins from bacteria. J. Biosci. Bioeng. 94: 492-496. https://doi.org/10.1016/S1389-1723(02)80185-2
- Kawahara, H., N. Koda, M. Oshio, and H. Obata. 2000. A cold acclimation protein with refolding activity on frozen denatured enzymes. Biosci. Biotechnol. Biochem. 64:2668-2674. https://doi.org/10.1271/bbb.64.2668
- Kiran, M.D., S. Annapoorni, I. Suzuki, N. Murata, and S. Shivaji. 2005. Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117-125. https://doi.org/10.1007/s00792-005-0435-6
- Kiran, M.D., J.S.S. Prakash, S. Annapoorni, S. Dube, T. Kusano, H. Okuyama, N. Murata, and S. Shivaji. 2004. Psychrophilic Pseudomonas syringae required trans monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401-410. https://doi.org/10.1007/s00792-004-0401-8
- Knight, C.A., J. Hallett, and A.L. Devries. 1988. Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55-60. https://doi.org/10.1016/0011-2240(88)90020-X
- Kozloff, L.M., M.A. Schofield, and M. Lute. 1983. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153:222-231.
- Lee, R.E., G.J. Warren, and L.V. Gusta. 1995. Biochemistry of bacterial ice nuclei. p. 63-83 In F. Ray and W.K. Paul (ed.) Biological ice nucleation and its application. APS Press, St Paul, Minnesota.
- Lindow, S.E., D.C. Arnym, and C.D. Upper. 1978. Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathol. 68:523-527. https://doi.org/10.1094/Phyto-68-523
- Liu, S., J.E. Graham, L. Bigelow, P.D. Morse II, and B.J. Wilkinson. 2002. Identification of Listeria monocytogens genes expressed in response to growth at low temperature. Appl. Environ. Microbiol. 68:1697-1705. https://doi.org/10.1128/AEM.68.4.1697-1705.2002
- Maki, L.R., E.L. Gaylan, M. Chang-Chein, and D.R. Caldwell. 1974. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 28:456-459.
- Margesin, R., G. Neuner, and K.B. Storey. 2007. Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturewisenschaften 94:77-99. https://doi.org/10.1007/s00114-006-0162-6
- Marx, J.G., S.D. Carpenter, and J.W. Deming. 2009. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 55:63-72. https://doi.org/10.1139/W08-130
- Methe, B.A., K.E. Nelson, J.W. Deming, E. Melamud, X. Zhang, J. Moult, R. Madupu, W.C. Nelson, R.J. Dodson, L.M. Brinkac, S.C. Daugherty, A.S. Durkin, R.T. DeBoy, J.F. Kolonay, S.A. Sullivan, L. Zhou, T.M. Davidsen, M. Wu, A.L. Huston, M. Lewis, B. Weaver, J.F. Weidman, H. Khouri, T.R. Utterback, T.V. Feldblyum, and C.M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA. 102: 10913-10918. https://doi.org/10.1073/pnas.0504766102
- Mishra, M. and R. Goel. 1999. Development of a cold resistant mutant of plant growth promoting Pseudomonas fluorescens and its functional characterization. J. Biotechnol. 75:71-75. https://doi.org/10.1016/S0168-1656(99)00137-6
- Mishra, P.K., S. Mishra, G. Selvakumar, S.C. Bisht, J.K. Bisht, S. Kundu, and H.S. Gupta. 2008. Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. Strain PGERs17 (MTCC 9000) isolated from north western Indian Himalayas. Ann. Microbiol. 58:561-568. https://doi.org/10.1007/BF03175558
- Mishra, P.K., S. Mishra, S.C. Bisht, G. Selvakumar, S. Kundu, J.K. Bisht, and H.S. Gupta. 2009. Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp, NARs9 (MTCC9002) from the Indian Himalayas. Biol. Res. 42:305-313.
- Mishra, P.K., P. Joshi, S.C. Bisht, J.K. Bisht, and G. Selvakumar. 2011a. Cold-tolerant agriculturally important microorganisms. p. 273-296. In D.K. Mageswari (ed.) Plant growth and health promoting bacteria. Microbiology Monographs V.18. Springer-Verlag, Berlin.
- Mishra, P.K., S.C. Bisht, P. Ruwari, G. Selvakumar, G.K. Joshi, J.K. Bisht, J.C. Bhatt, and H.S. Gupta. 2011b. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonas from NW Himalayas. Arch. Microbiol. 193:497-513. https://doi.org/10.1007/s00203-011-0693-x
- Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci.11:15-19. https://doi.org/10.1016/j.tplants.2005.11.002
- Morita, R.Y. 1975. Psycrophilic bacteria. Bacteriol. Rev. 39: 144-167.
- Moyer, C.L. and R.Y. Morita. 2007. Psychrophiles and psychrotrophs. John Wiley & Sons, Ltd. DOI: 10.1002/ 9780470015902.a0000402.pub2.
- Muryoi, N., M. Sato, S. Kaneko, H. Kawaahara, H. Obata, M.W.F. Yaish, M. Griffth, and B.R. Glick. 2004. Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth promoting rhizobacterium Pseudomonas putida GR12-2. J. Bacteriol. 186:5661-5671. https://doi.org/10.1128/JB.186.17.5661-5671.2004
- Obata, H., N. Muryoi, H. Kawahara, K. Yamade, and J. Nishikawa. 1999. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties. Cryobiology 38:131-139. https://doi.org/10.1006/cryo.1999.2156
- Okuyama, H., N. Okajima, S. Sasaki, S. Higashi, and N. Murata. 1991. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim. Biophys. Acta. 1084:13-20. https://doi.org/10.1016/0005-2760(91)90049-N
- Pandey, A., P. Trivedi, B. Kumar, and L.M.S. Palni. 2006. Characterization of a phosphate solublizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr. Microbiol. 53:102-107. https://doi.org/10.1007/s00284-006-4590-5
- Piette, F., S. D'Amico, G. Mazzucchelli, A. Danchin, P. Leprince, and G. Feller. 2011. Life in the cold: a proteomic study of coldrepressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl. Environ. Microbiol. 77:3881-3883. https://doi.org/10.1128/AEM.02757-10
- Polissi, A., W. De Laurentis, S. Zangrossi, F. Briani, V. Loghi, G. Pesole, and G. Deho. 2003. Changes in Escherichia coli transcriptome during acclimatization at low temperature. Microbiol. Res. 154:573-580. https://doi.org/10.1016/S0923-2508(03)00167-0
- Prevost, D., P. Drouin, and H. Antoun. 1999. The potential use of cold adapted rhizobia to improve nitrogen fixation in legumes cultivated in temperate regions. p. 161-176. In R. Margesin and F. Schinner (ed.) Biotechnological application of cold-adapted organisms. Springer, Berlin.
- Prevost, D., P. Drouin, S. Laberge, A. Bertrand, J. Cloutier, and G. Levesque. 2003. Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can. J. Bot. 81:1153-1161. https://doi.org/10.1139/b03-113
- Purusharth, R.I., F. Klein, S. Sulthana, S. Jager, M.V. Jagannadham, E.E. Hackenberg, M.K. Ray, and G. Klug. 2005. Exoribonuclease R interacts with endoribonuclease E and RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J. Biol. Chem. 280:14572-14578. https://doi.org/10.1074/jbc.M413507200
- Ray, M.K. 2006. Cold-stress response of low temperature adapted bacteria. p. 1-23. In A.S. Sreedhar and U.K. Srinivas (ed.) Stress response: A molecular biology approach. Research Signpost, India.
- Ray, M.K., G. Seshu Kumar, and S. Shivaji. 1994a. Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiol. 140:3217-3223. https://doi.org/10.1099/13500872-140-12-3217
- Ray, M.K., T. Sitaramamma, S. Gandhi, and S. Shivaji. 1994b. Occurrence and expression of csp A, a cold shock gene in Antarctic psychrotrophic bacteria. FEMS Microbiol. Lett. 116:55-60. https://doi.org/10.1111/j.1574-6968.1994.tb06675.x
- Ray, M.K., G.S. Kumar, K. Janiyani, K. Kannan, P. Jagtap, M.K. Basu, and S. Shivaji. 1998. Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J. Biosci. 23:423-435. https://doi.org/10.1007/BF02936136
- Raymond, J.A. and A.L. DeVries. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA. 74:2589-2593. https://doi.org/10.1073/pnas.74.6.2589
- Roberts, M.E. and W.E. Inniss. 1992. The synthesis of cold shock proteins and cold acclimation proteins in the psychrophilic bacterium Aquaspirillum articum. Curr. Microbiol. 25:275-278. https://doi.org/10.1007/BF01575861
- Robertson, G.P. and A.S. Grandy. 2005. Soil system management in temperate regions. P. 27-39. In N.T. Uphoff (ed.) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, Florida.
- Russell, N.J. 1997. Psychrophilic bacteria-molecular adaptations of membrane lipids. Comp. Biochem. Psysiol. 118A:489-493.
- Saleem, M., M. Arshad, S. Hussain, and A.S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34:635-648. https://doi.org/10.1007/s10295-007-0240-6
- Sano, F., N. Asakawa, Y. Inouye, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80-87. https://doi.org/10.1006/cryo.1999.2188
-
Sardesai, N. and C.R. Babu. 2001. Poly-
$\beta$ -hydroxybutyrate metabolism is affected by changes in respiratory enzymatic activities due to cold stress in two psychrotrophic strains of Rhizobium. Curr. Microbiol. 42:53-58. https://doi.org/10.1007/s002840010178 - Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A.D. Gupta, and H.S. Gupta. 2010. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from Uttarakhand Himalayas. Indian J. Microbiol. 50:50-56. https://doi.org/10.1007/s12088-009-0024-y
- Selvakumar, G., M. Mohan, S. Kundu, A.D. Gupta, S. Nazim, and H.S. Gupta. 2008b. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46:171-175.
- Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A.D. Gupta, P.K. Mishra, and H.S. Gupta. 2008a. Characterization of a cold-tolerant plant growth -promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the north western Indian Himalayas. World J. Microbiol. Biotechnol. 24:955-960. https://doi.org/10.1007/s11274-007-9558-5
- Selvakumar, G., P. Joshi, P. Suyal, P.K. Mishra, G.K. Joshi, J.K. Bisht, J.C. Bhatt, and H.S. Gupta. 2011. Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J. Microbiol. Biotechnol. 27:1129-1135. https://doi.org/10.1007/s11274-010-0559-4
- Shivaji, S. and J.S.S. Prakash. 2010. How do bacteria sense and respond to low temperature? Arch. Microbiol. 192:85-95. https://doi.org/10.1007/s00203-009-0539-y
- Shivaji, S., M.D. Kiran, and S. Chintalapati. 2007. Perception and transduction of low temperature in bacteria. p. 194- 207. In C. Gerday and V.N. Glansdor (ed.) Physiology and biochemistry of extremophiles. ASM Press, Washington.
- Solanke, A.U. and A.K. Sharma. 2008. Signal transduction during cold stress in plants. Physiol. Mol. Biol. Plants 14: 69-79. https://doi.org/10.1007/s12298-008-0006-2
- Sun, X., M. Griffith, J.J. Pasternak, and B.R. Glick. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41:776-784. https://doi.org/10.1139/m95-107
- Trivedi, P. and T. Sa. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solublization, organic acid production, and plant growth at lower temperatures. Curr. Microbiol.56:140-144. https://doi.org/10.1007/s00284-007-9058-8
- Trivedi, P., A. Pandey, and T. Sa. 2007. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J. Basic Microb. 47:513-517. https://doi.org/10.1002/jobm.200700224
- Turner, M.A., F. Arellano, and L.M. Kozloff. 1991. Components of ice nucleation structures of bacteria. J. Bacteriol. 173: 6515-6527.
- Vyas, P., R. Joshi, K.C. Sharma, P. Rahi, A. Gulati, and A. Gulati. 2010. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J. Microbiol. Biotechnol. 20:1724-1734.
- Weber, M.H., W. Klein, L. Müller, U.M. Niess, and M.A. Marahiel. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39:1321-1329. https://doi.org/10.1111/j.1365-2958.2001.02322.x
- Xu, H., M. Griffith, C.L. Patten, and B.R. Glick. 1998. Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 44:64-73. https://doi.org/10.1139/cjm-44-1-64
- Yamashita, Y., N. Nakamura, K. Omiya, J. Nisikawa,, H. Kawahara, and H. Obata. 2002. Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci. Biotechnol. Biochem. 66:239-247. https://doi.org/10.1271/bbb.66.239
- Zacharuassen, K.E. and E. Kristiansen. 2000. Ice nucleation and anti-nucleation in nature. Cryobiology 41:257-279. https://doi.org/10.1006/cryo.2000.2289
- Zhang, W. and L. Shi. 2005. Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiol. 151:2159-2173. https://doi.org/10.1099/mic.0.27987-0
피인용 문헌
- Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize vol.3, pp.1, 2016, https://doi.org/10.1186/s40538-016-0069-1
- Draft genome of Kocuria polaris CMS 76orT isolated from cyanobacterial mats, McMurdo Dry Valley, Antarctica: an insight into CspA family of proteins from Kocuria polaris CMS 76orT vol.197, pp.8, 2015, https://doi.org/10.1007/s00203-015-1138-8