DOI QR코드

DOI QR Code

Psychrotolerance Mechanisms in Cold-Adapted Bacteria and their Perspectives as Plant Growth-Promoting Bacteria in Temperate Agriculture

  • Received : 2011.07.15
  • Accepted : 2011.08.17
  • Published : 2011.08.31

Abstract

Cold-adapted bacteria survive in extremely cold temperature conditions and exhibit various mechanisms of adaptation to sustain their regular metabolic functions. These adaptations include several physiological and metabolic changes that assist growth in a myriad of ways. Successfully sensing of the drop in temperature in these bacteria is followed by responses which include changes in the outer cell membrane to changes in the central nucleoid of the cell. Their survival is facilitated through many ways such as synthesis of cryoprotectants, cold acclimation proteins, cold shock proteins, RNA degradosomes, Antifreeze proteins and ice nucleators. Agricultural productivity in cereals and legumes under low temperature is influenced by several cold adopted bacteria including Pseudomonas, Acinetobacter, Burkholderia, Exiguobacterium, Pantoea, Rahnella, Rhodococcus and Serratia. They use plant growth promotion mechanisms including production of IAA, HCN, and ACC deaminase, phosphate solublization and biocontrol against plant pathogens such as Alternaria, Fusarium, Sclerotium, Rhizoctonia and Pythium.

Keywords

References

  1. Appleby, J.L., J.S. Parkinson, and R.B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less travelled. Cell 86:845-848. https://doi.org/10.1016/S0092-8674(00)80158-0
  2. Araki, T. 1992. An analysis of the effect of changes in growth temperature on proteolysis in vivo in the psychrophilic bacterium Vibrio sp. strain ANT-300. J. Gen. Microbiol. 138: 2075-2082. https://doi.org/10.1099/00221287-138-10-2075
  3. Barka, E.A., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phyto firmans strain PsJN. Appl. Environ. Microbiol. 72:7246-7252. https://doi.org/10.1128/AEM.01047-06
  4. Beck, E.H., R. Heim, and J. Hansen. 2004. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29:449-459. https://doi.org/10.1007/BF02712118
  5. Bordeleau, L.M. and D. Prevost. 1994. Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115-125. https://doi.org/10.1007/BF02183092
  6. Boyer, J.S. 1982. Plant productivity and environment. Science 218:443-448. https://doi.org/10.1126/science.218.4571.443
  7. Carpousis, A.J. 2002. The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multienyzme complexes. Biochem. Soc. Trans. 30:150-155.
  8. Chattopadhyay, M.K. 2000. Cold adaptation of Antarctic microorganisms - possible involvement of viable but nonculturable state. Polar Biol. 23:223-224. https://doi.org/10.1007/s003000050030
  9. Chattopadhyay, M.K. 2006. Mechanism of bacterial adaptation to low temperature. J. Biosci. 31:157-165. https://doi.org/10.1007/BF02705244
  10. Chattopadhyay, M.K. 2002. The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol. 10:311.
  11. Chattopadhyay, M.K. and M.V. Jagannadham. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 24: 386-388. https://doi.org/10.1007/s003000100232
  12. Cheng, Z., E. Park, and B.R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53:912-918. https://doi.org/10.1139/W07-050
  13. Chu, J., X. Yao, and Z. Zhang. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 136:355-363. https://doi.org/10.1007/s12011-009-8542-3
  14. Coker, J.A., P.P. Sheridan, J. Loveland-Curtze, K.R. Gutshall, A.J. Auman, and J.E. Brenchley. 2003. Biochemical characterization of a $\beta$-galatosidase with a low optimum obtained from an Antarctic Arthrobacter isolate. J. Bacteriol. 185:5473-5482. https://doi.org/10.1128/JB.185.18.5473-5482.2003
  15. D'Amico, S., P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M.A. Meuwis, G. Feller, and C. Gerday. 2002. Molecular basis of cold adaptation. Phil. Trans. R. Soc. Lond. B. 357:917-925. https://doi.org/10.1098/rstb.2002.1105
  16. Duman, J.G. and T.M. Olsen. 1993. Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322-328. https://doi.org/10.1006/cryo.1993.1031
  17. Egamberdiyeva, D. and G. Hoflich. 2003. Influence of growthpromoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35:973-978. https://doi.org/10.1016/S0038-0717(03)00158-5
  18. Ercolini, D., F. Russo, A. Nasi, P. Ferranti, and F. Villani. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75:1990-2001. https://doi.org/10.1128/AEM.02762-08
  19. Feller, G. and C. Gerday. 2003. Psychrophilic enzymes: hot topic in cold adaptation. Nat. Rev. Microbiol.1:200-208. https://doi.org/10.1038/nrmicro773
  20. Fowler, S. and M.F. Thomashow. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675-1690. https://doi.org/10.1105/tpc.003483
  21. Franks, F. 1985. Biophysics and biochemistry at low temperatures. Cambridge University Press, New York.
  22. Gianese, G., P. Argos, and S. Pascarella. 2001. Structural adaptation of enzymes to low temperatures. Protein Eng. 14:141-148. https://doi.org/10.1093/protein/14.3.141
  23. Gilbert, J.A., P.L. Davies, and J. Laybourn-Parry. 2005. A hyperactive $Ca^{2+}$-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol. Lett. 245:67-72. https://doi.org/10.1016/j.femsle.2005.02.022
  24. Gilbert, J.A., P.J. Hill, C.E.R. Dodd, and J. Laybourn-Parry. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiol. 150:171-180. https://doi.org/10.1099/mic.0.26610-0
  25. Goldstein, J., N.S. Pollitt, and M. Inouye. 1990. Major coldshock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA. 87:283-287. https://doi.org/10.1073/pnas.87.1.283
  26. Gow, J.A. and F.H.J. Mills. 1984. Pragmatic criteria to distinguish psychrophiles and psychrotrophs in ecological systems. Appl. Environ. Microbiol. 47:213-215.
  27. Graumann, P.L. and M.A. Marahiel. 1999. Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:203-209.
  28. Gruszecki, W.I. and K. Strzałka. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 1740:108-115. https://doi.org/10.1016/j.bbadis.2004.11.015
  29. Gulati, A., P. Vyas, P. Rahi, and R.C. Kasana. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58:71-377.
  30. Guy, C.L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:187-223. https://doi.org/10.1146/annurev.pp.41.060190.001155
  31. Hebraud, M. and P. Potier. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1:211-219.
  32. Heipieper, H.J., F. Meinhardt, and A. Segura. 2003. The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology, and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229:1-7. https://doi.org/10.1016/S0378-1097(03)00792-4
  33. Horn, G., W. Hofweber, W. Kremer, and H.R. Kalbitzer. 2007. Structure and function of bacterial cold shock proteins. Cell. Mol. Life. Sci. 64:1457-1470. https://doi.org/10.1007/s00018-007-6388-4
  34. Huston, A.L., B. Methe, and J.W. Deming. 2004. Purification, characterization and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70: 3321-3328. https://doi.org/10.1128/AEM.70.6.3321-3328.2004
  35. Jagannadham, M.V., M.K. Chattopadhayay, and S. Shivaji. 1996. The major carotenoid pigment of a psychrophilic Micrococcus roseus strain: fluorescence properties of the pigment and its binding to membranes. Biochem. Biophys. Res. Commun. 220: 724-728. https://doi.org/10.1006/bbrc.1996.0471
  36. Jagannadham, M.V., M.K. Chattopadhayay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C.M. Rao, and S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium Sphingobacterium antarcticus and a mesophilic bacterium Sphingobacterium multivorum. Arch. Microbiol. 173:418-424. https://doi.org/10.1007/s002030000163
  37. Jagtap, P. and M.K. Ray. 1999. Studies on the cytoplasmic protein tyrosine kinase activity of the Antarctic psychrophilic bacterium Pseudomonas syringae. FEMS Microbiol. Lett. 173:379-388. https://doi.org/10.1111/j.1574-6968.1999.tb13529.x
  38. Johns, G.C. and G.N. Somero. 2004. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol. Biol. Evol. 21:314-320.
  39. Jones, P.G., R. Krah, S.R. Tafuri, and A.P. Wolve. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174:5798-5802.
  40. Kaneda, T. 1991. Iso- and anteiso- fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol. Rev. 55:288-302.
  41. Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287-291. https://doi.org/10.1038/7036
  42. Katiyar, V. and R. Goel. 2004. Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul. 42:239-244. https://doi.org/10.1023/B:GROW.0000026477.10681.d2
  43. Kaushik, R., A.K. Saxena, and K.V.B.R. Tilak. 2002. Can Azospirillum strains capable of growing at a sub-optimal temperature perform better in field-grown-wheat rhizosphere. Biol. Fertil. Soils 35:92-95. https://doi.org/10.1007/s00374-002-0444-x
  44. Kawahara, H. 2002. The structures and functions of ice crystalcontrolling proteins from bacteria. J. Biosci. Bioeng. 94: 492-496. https://doi.org/10.1016/S1389-1723(02)80185-2
  45. Kawahara, H., N. Koda, M. Oshio, and H. Obata. 2000. A cold acclimation protein with refolding activity on frozen denatured enzymes. Biosci. Biotechnol. Biochem. 64:2668-2674. https://doi.org/10.1271/bbb.64.2668
  46. Kiran, M.D., S. Annapoorni, I. Suzuki, N. Murata, and S. Shivaji. 2005. Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117-125. https://doi.org/10.1007/s00792-005-0435-6
  47. Kiran, M.D., J.S.S. Prakash, S. Annapoorni, S. Dube, T. Kusano, H. Okuyama, N. Murata, and S. Shivaji. 2004. Psychrophilic Pseudomonas syringae required trans monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401-410. https://doi.org/10.1007/s00792-004-0401-8
  48. Knight, C.A., J. Hallett, and A.L. Devries. 1988. Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55-60. https://doi.org/10.1016/0011-2240(88)90020-X
  49. Kozloff, L.M., M.A. Schofield, and M. Lute. 1983. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153:222-231.
  50. Lee, R.E., G.J. Warren, and L.V. Gusta. 1995. Biochemistry of bacterial ice nuclei. p. 63-83 In F. Ray and W.K. Paul (ed.) Biological ice nucleation and its application. APS Press, St Paul, Minnesota.
  51. Lindow, S.E., D.C. Arnym, and C.D. Upper. 1978. Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathol. 68:523-527. https://doi.org/10.1094/Phyto-68-523
  52. Liu, S., J.E. Graham, L. Bigelow, P.D. Morse II, and B.J. Wilkinson. 2002. Identification of Listeria monocytogens genes expressed in response to growth at low temperature. Appl. Environ. Microbiol. 68:1697-1705. https://doi.org/10.1128/AEM.68.4.1697-1705.2002
  53. Maki, L.R., E.L. Gaylan, M. Chang-Chein, and D.R. Caldwell. 1974. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 28:456-459.
  54. Margesin, R., G. Neuner, and K.B. Storey. 2007. Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturewisenschaften 94:77-99. https://doi.org/10.1007/s00114-006-0162-6
  55. Marx, J.G., S.D. Carpenter, and J.W. Deming. 2009. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 55:63-72. https://doi.org/10.1139/W08-130
  56. Methe, B.A., K.E. Nelson, J.W. Deming, E. Melamud, X. Zhang, J. Moult, R. Madupu, W.C. Nelson, R.J. Dodson, L.M. Brinkac, S.C. Daugherty, A.S. Durkin, R.T. DeBoy, J.F. Kolonay, S.A. Sullivan, L. Zhou, T.M. Davidsen, M. Wu, A.L. Huston, M. Lewis, B. Weaver, J.F. Weidman, H. Khouri, T.R. Utterback, T.V. Feldblyum, and C.M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA. 102: 10913-10918. https://doi.org/10.1073/pnas.0504766102
  57. Mishra, M. and R. Goel. 1999. Development of a cold resistant mutant of plant growth promoting Pseudomonas fluorescens and its functional characterization. J. Biotechnol. 75:71-75. https://doi.org/10.1016/S0168-1656(99)00137-6
  58. Mishra, P.K., S. Mishra, G. Selvakumar, S.C. Bisht, J.K. Bisht, S. Kundu, and H.S. Gupta. 2008. Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. Strain PGERs17 (MTCC 9000) isolated from north western Indian Himalayas. Ann. Microbiol. 58:561-568. https://doi.org/10.1007/BF03175558
  59. Mishra, P.K., S. Mishra, S.C. Bisht, G. Selvakumar, S. Kundu, J.K. Bisht, and H.S. Gupta. 2009. Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp, NARs9 (MTCC9002) from the Indian Himalayas. Biol. Res. 42:305-313.
  60. Mishra, P.K., P. Joshi, S.C. Bisht, J.K. Bisht, and G. Selvakumar. 2011a. Cold-tolerant agriculturally important microorganisms. p. 273-296. In D.K. Mageswari (ed.) Plant growth and health promoting bacteria. Microbiology Monographs V.18. Springer-Verlag, Berlin.
  61. Mishra, P.K., S.C. Bisht, P. Ruwari, G. Selvakumar, G.K. Joshi, J.K. Bisht, J.C. Bhatt, and H.S. Gupta. 2011b. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonas from NW Himalayas. Arch. Microbiol. 193:497-513. https://doi.org/10.1007/s00203-011-0693-x
  62. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci.11:15-19. https://doi.org/10.1016/j.tplants.2005.11.002
  63. Morita, R.Y. 1975. Psycrophilic bacteria. Bacteriol. Rev. 39: 144-167.
  64. Moyer, C.L. and R.Y. Morita. 2007. Psychrophiles and psychrotrophs. John Wiley & Sons, Ltd. DOI: 10.1002/ 9780470015902.a0000402.pub2.
  65. Muryoi, N., M. Sato, S. Kaneko, H. Kawaahara, H. Obata, M.W.F. Yaish, M. Griffth, and B.R. Glick. 2004. Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth promoting rhizobacterium Pseudomonas putida GR12-2. J. Bacteriol. 186:5661-5671. https://doi.org/10.1128/JB.186.17.5661-5671.2004
  66. Obata, H., N. Muryoi, H. Kawahara, K. Yamade, and J. Nishikawa. 1999. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties. Cryobiology 38:131-139. https://doi.org/10.1006/cryo.1999.2156
  67. Okuyama, H., N. Okajima, S. Sasaki, S. Higashi, and N. Murata. 1991. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim. Biophys. Acta. 1084:13-20. https://doi.org/10.1016/0005-2760(91)90049-N
  68. Pandey, A., P. Trivedi, B. Kumar, and L.M.S. Palni. 2006. Characterization of a phosphate solublizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr. Microbiol. 53:102-107. https://doi.org/10.1007/s00284-006-4590-5
  69. Piette, F., S. D'Amico, G. Mazzucchelli, A. Danchin, P. Leprince, and G. Feller. 2011. Life in the cold: a proteomic study of coldrepressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl. Environ. Microbiol. 77:3881-3883. https://doi.org/10.1128/AEM.02757-10
  70. Polissi, A., W. De Laurentis, S. Zangrossi, F. Briani, V. Loghi, G. Pesole, and G. Deho. 2003. Changes in Escherichia coli transcriptome during acclimatization at low temperature. Microbiol. Res. 154:573-580. https://doi.org/10.1016/S0923-2508(03)00167-0
  71. Prevost, D., P. Drouin, and H. Antoun. 1999. The potential use of cold adapted rhizobia to improve nitrogen fixation in legumes cultivated in temperate regions. p. 161-176. In R. Margesin and F. Schinner (ed.) Biotechnological application of cold-adapted organisms. Springer, Berlin.
  72. Prevost, D., P. Drouin, S. Laberge, A. Bertrand, J. Cloutier, and G. Levesque. 2003. Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can. J. Bot. 81:1153-1161. https://doi.org/10.1139/b03-113
  73. Purusharth, R.I., F. Klein, S. Sulthana, S. Jager, M.V. Jagannadham, E.E. Hackenberg, M.K. Ray, and G. Klug. 2005. Exoribonuclease R interacts with endoribonuclease E and RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J. Biol. Chem. 280:14572-14578. https://doi.org/10.1074/jbc.M413507200
  74. Ray, M.K. 2006. Cold-stress response of low temperature adapted bacteria. p. 1-23. In A.S. Sreedhar and U.K. Srinivas (ed.) Stress response: A molecular biology approach. Research Signpost, India.
  75. Ray, M.K., G. Seshu Kumar, and S. Shivaji. 1994a. Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiol. 140:3217-3223. https://doi.org/10.1099/13500872-140-12-3217
  76. Ray, M.K., T. Sitaramamma, S. Gandhi, and S. Shivaji. 1994b. Occurrence and expression of csp A, a cold shock gene in Antarctic psychrotrophic bacteria. FEMS Microbiol. Lett. 116:55-60. https://doi.org/10.1111/j.1574-6968.1994.tb06675.x
  77. Ray, M.K., G.S. Kumar, K. Janiyani, K. Kannan, P. Jagtap, M.K. Basu, and S. Shivaji. 1998. Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J. Biosci. 23:423-435. https://doi.org/10.1007/BF02936136
  78. Raymond, J.A. and A.L. DeVries. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA. 74:2589-2593. https://doi.org/10.1073/pnas.74.6.2589
  79. Roberts, M.E. and W.E. Inniss. 1992. The synthesis of cold shock proteins and cold acclimation proteins in the psychrophilic bacterium Aquaspirillum articum. Curr. Microbiol. 25:275-278. https://doi.org/10.1007/BF01575861
  80. Robertson, G.P. and A.S. Grandy. 2005. Soil system management in temperate regions. P. 27-39. In N.T. Uphoff (ed.) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, Florida.
  81. Russell, N.J. 1997. Psychrophilic bacteria-molecular adaptations of membrane lipids. Comp. Biochem. Psysiol. 118A:489-493.
  82. Saleem, M., M. Arshad, S. Hussain, and A.S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34:635-648. https://doi.org/10.1007/s10295-007-0240-6
  83. Sano, F., N. Asakawa, Y. Inouye, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80-87. https://doi.org/10.1006/cryo.1999.2188
  84. Sardesai, N. and C.R. Babu. 2001. Poly-$\beta$-hydroxybutyrate metabolism is affected by changes in respiratory enzymatic activities due to cold stress in two psychrotrophic strains of Rhizobium. Curr. Microbiol. 42:53-58. https://doi.org/10.1007/s002840010178
  85. Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A.D. Gupta, and H.S. Gupta. 2010. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from Uttarakhand Himalayas. Indian J. Microbiol. 50:50-56. https://doi.org/10.1007/s12088-009-0024-y
  86. Selvakumar, G., M. Mohan, S. Kundu, A.D. Gupta, S. Nazim, and H.S. Gupta. 2008b. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46:171-175.
  87. Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A.D. Gupta, P.K. Mishra, and H.S. Gupta. 2008a. Characterization of a cold-tolerant plant growth -promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the north western Indian Himalayas. World J. Microbiol. Biotechnol. 24:955-960. https://doi.org/10.1007/s11274-007-9558-5
  88. Selvakumar, G., P. Joshi, P. Suyal, P.K. Mishra, G.K. Joshi, J.K. Bisht, J.C. Bhatt, and H.S. Gupta. 2011. Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J. Microbiol. Biotechnol. 27:1129-1135. https://doi.org/10.1007/s11274-010-0559-4
  89. Shivaji, S. and J.S.S. Prakash. 2010. How do bacteria sense and respond to low temperature? Arch. Microbiol. 192:85-95. https://doi.org/10.1007/s00203-009-0539-y
  90. Shivaji, S., M.D. Kiran, and S. Chintalapati. 2007. Perception and transduction of low temperature in bacteria. p. 194- 207. In C. Gerday and V.N. Glansdor (ed.) Physiology and biochemistry of extremophiles. ASM Press, Washington.
  91. Solanke, A.U. and A.K. Sharma. 2008. Signal transduction during cold stress in plants. Physiol. Mol. Biol. Plants 14: 69-79. https://doi.org/10.1007/s12298-008-0006-2
  92. Sun, X., M. Griffith, J.J. Pasternak, and B.R. Glick. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41:776-784. https://doi.org/10.1139/m95-107
  93. Trivedi, P. and T. Sa. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solublization, organic acid production, and plant growth at lower temperatures. Curr. Microbiol.56:140-144. https://doi.org/10.1007/s00284-007-9058-8
  94. Trivedi, P., A. Pandey, and T. Sa. 2007. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J. Basic Microb. 47:513-517. https://doi.org/10.1002/jobm.200700224
  95. Turner, M.A., F. Arellano, and L.M. Kozloff. 1991. Components of ice nucleation structures of bacteria. J. Bacteriol. 173: 6515-6527.
  96. Vyas, P., R. Joshi, K.C. Sharma, P. Rahi, A. Gulati, and A. Gulati. 2010. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J. Microbiol. Biotechnol. 20:1724-1734.
  97. Weber, M.H., W. Klein, L. Müller, U.M. Niess, and M.A. Marahiel. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39:1321-1329. https://doi.org/10.1111/j.1365-2958.2001.02322.x
  98. Xu, H., M. Griffith, C.L. Patten, and B.R. Glick. 1998. Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 44:64-73. https://doi.org/10.1139/cjm-44-1-64
  99. Yamashita, Y., N. Nakamura, K. Omiya, J. Nisikawa,, H. Kawahara, and H. Obata. 2002. Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci. Biotechnol. Biochem. 66:239-247. https://doi.org/10.1271/bbb.66.239
  100. Zacharuassen, K.E. and E. Kristiansen. 2000. Ice nucleation and anti-nucleation in nature. Cryobiology 41:257-279. https://doi.org/10.1006/cryo.2000.2289
  101. Zhang, W. and L. Shi. 2005. Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiol. 151:2159-2173. https://doi.org/10.1099/mic.0.27987-0

Cited by

  1. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize vol.3, pp.1, 2016, https://doi.org/10.1186/s40538-016-0069-1
  2. Draft genome of Kocuria polaris CMS 76orT isolated from cyanobacterial mats, McMurdo Dry Valley, Antarctica: an insight into CspA family of proteins from Kocuria polaris CMS 76orT vol.197, pp.8, 2015, https://doi.org/10.1007/s00203-015-1138-8