DOI QR코드

DOI QR Code

Mixed-mode fracture toughness measurement of a composite/metal interface

복합재료/금속 접착 계면의 혼합모드 파괴인성 측정

  • 김원석 (한국항공우주연구원 위성구조팀) ;
  • 장창재 (한국과학기술원 기계공학과 대학원) ;
  • 이정주 (한국과학기술원 기계공학과)
  • Published : 2011.04.30

Abstract

Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.

복합재료/금속 접착 조인트의 파손기준을 제시하기 위하여 다양한 혼합모드 하중상태에서 계면파괴인성을 측정하였다. 계면파괴인성은 SLB 시편을 이용하여 측정하였으며 시편의 두께를 변화시킴으로 모드 혼합비율을 다양하게 설정하였다. 실험결과 계면의 파괴인성은 균열 열림에 비해 균열 미끄러짐 모드의 비율이 높은 하중상태에서 더 큰 값을 나타내었다. 균열 열림 및 미끄러짐 하중모드에 따른 계면파괴 거동의 차이를 균열진전 과정을 관찰한 현미경 영상을 기초로 고찰하였다. 표면 거칠기가 접착 강도에 미치는 영향 또한 고찰되었다.

Keywords

References

  1. Higgins, A., "Adhesive bonding of aircraft structures," Int. J. Adhes. Adhes., Vol. 20, No. 5, 2000, pp. 367-376. https://doi.org/10.1016/S0143-7496(00)00006-3
  2. Davis, J.R, Aluminum and Aluminum Alloys (ASM Specialty Handbook), ASM International, 1993, pp. 438-450.
  3. Brockmann, W., Geiss, P.L., Klingen, J., Schroder, B., Adhesive bonding: Materials, Applications and Technology, WILEY-VCH, 2009, pp. 205-236.
  4. Albrecht, P. and Sahli, A.H., "Static strength of bolted and adhesively bonded joints for steel structures," Adhesively bonded joints: testing, analysis and design, ASTM STP 981, W.S. Johnson, Ed., Philadelphia, 1988, pp. 229-251.
  5. Noor, A.K., Structures technology for future aerospace systems, AIAA, Virginia, 2000, pp, 58-65.
  6. ASTM D 3433 - 1999, Standard test method for fracture strength in cleavage of adhesives in bonded metal joints.
  7. ASTM D 5528 - 2001, Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites.
  8. ISO 15024 - 2001, Fibre-reinforced plastic composites - determination of mode I interlaminar fracture toughness, Gk, for unidirectionally reinforced materials.
  9. JIS K 7086 - 1993, Testing methods for interlaminar fracture toughness of carbon fiber reinforced plastics.
  10. Arcan, M., Hashin, Z., Voloshin, A., "A methods to produce uniform plane stress state with applications to fiber-reinforced materials," Exp. Mech., Vol. 18, 1978, pp. 141-146. https://doi.org/10.1007/BF02324146
  11. Richard, H.A., "A new compact shear specimen," Int. J. Fract., Vol. 17, 1981, pp. R105-107.
  12. Richard, H.A., Benitz, K., "A loading device for the creation of mixed mode in fracture mechanics," Int. J. Fract., Vol. 22, 1983, pp. R55-58. https://doi.org/10.1007/BF00942726
  13. Wang, J.S., Suo, Z., "Experimental determination of interfacial toughness curves using Brazil Nut sandwiches," Acta metal. Mater., Vol. 38, 1990, pp. 1279-1290. https://doi.org/10.1016/0956-7151(90)90200-Z
  14. Davidson, B.D., Sundararaman, V., "A single leg bending test for interfacial fracture toughness determination," Int. J. Fract., Vol. 78, 1996, pp. 193-210. https://doi.org/10.1007/BF00034525
  15. 김원석, 이정주, "복합재료/금속 접착 계면의 파괴인성치 측정" 한국복합재료학회지, 제21권, 제4호, 2008, pp. 7-14.
  16. 정성균, "무게가 상이한 탄소부직포가 삽입된 CFRP 적층판의 층간파괴인성,'' 한국복합재료 학회지, 제22권, 제2호, 2009, pp. 43-48.
  17. DIN EN 6034 - 1995, Aerospace series - Carbon fibre reinforced plastics - Test method - Determination of interlaminar fracture toughness energy Mode II - GIIC.
  18. ASTM D 6671 - 2004, Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites.
  19. Davidson, B.D., Gharibian, S.J., Yu, L., "Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites," Int. J. Fract., Vol. 105, 2000, pp. 343-365. https://doi.org/10.1023/A:1007647226760
  20. Irwin, G.R, Kies, J.A., "Critical energy release rate analysis of fracture strength," Welding J., Vol. 33, 1954, Research Supplement, pp. 193-198.
  21. Jiao, J. Gurumurthy, C.K., Kramer, E.J., Sha, Y., Hui, C.Y., Borgensen, P., "Measurement of interfacial fracture toughness under combined mechanical and thermal stresses," J. Electron. Pack., Vol. 120, 1998, pp. 349-353. https://doi.org/10.1115/1.2792645
  22. Nairn, J.A., "On the calculation of energy release rate for cracked laminates with residual stresses," Int. J. Fract., Vol. 139, 2006, pp. 267-293. https://doi.org/10.1007/s10704-006-0044-0
  23. Yokozeki, T., Ogasawawa, T., Aoki, T., "Correction method for evaluation of interfacial fracture toughness of DCB, ENF and MMB specimens with residual thermal stresses," Compos. Sci. Tech., Vol. 68, 2008, pp. 760-767. https://doi.org/10.1016/j.compscitech.2007.08.025
  24. ASTM E 1820-05., Standard test method for measurement of fracture toughness.
  25. ASTM D 5045-99., Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials.
  26. Kinloch, A.J., Adhesion and Adhesives: science and technology, Chapman and Han, 1987.
  27. Kim, W.S., Yoon, I.H., Lee, J.J., lung, H.T., "Evaluation of mechanical interlock effect on adhesion strength of polymer-metal interfaces using micro-patterned surface topography," Int. J. Adhes. Adhes., Vol. 30, 2010, pp. 408-417. https://doi.org/10.1016/j.ijadhadh.2010.05.004

Cited by

  1. Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-A.2014.38.11.1265