Attack Detection in Recommender Systems Using a Rating Stream Trend Analysis

평가 스트림 추세 분석을 이용한 추천 시스템의 공격 탐지

  • 김용욱 (동국대학교 컴퓨터공학과) ;
  • 김준태 (동국대학교 컴퓨터공학과)
  • Received : 2011.02.10
  • Accepted : 2011.03.16
  • Published : 2011.04.30

Abstract

The recommender system analyzes users' preference and predicts the users' preference to items in order to recommend various items such as book, movie and music for the users. The collaborative filtering method is used most widely in the recommender system. The method uses rating information of similar users when recommending items for the target users. Performance of the collaborative filtering-based recommendation is lowered when attacker maliciously manipulates the rating information on items. This kind of malicious act on a recommender system is called 'Recommendation Attack'. When the evaluation data that are in continuous change are analyzed in the perspective of data stream, it is possible to predict attack on the recommender system. In this paper, we will suggest the method to detect attack on the recommender system by using the stream trend of the item evaluation in the collaborative filtering-based recommender system. Since the information on item evaluation included in the evaluation data tends to change frequently according to passage of time, the measurement of changes in item evaluation in a fixed period of time can enable detection of attack on the recommender system. The method suggested in this paper is to compare the evaluation stream that is entered continuously with the normal stream trend in the test cycle for attack detection with a view to detecting the abnormal stream trend. The proposed method can enhance operability of the recommender system and re-usability of the evaluation data. The effectiveness of the method was verified in various experiments.

추천 시스템은 사용자의 선호도를 분석하고, 아이템들에 대한 사용자의 선호도를 예측하여 책, 영화, 음악 등과 같은 아이템을 사용자에게 추천하는 시스템이다. 추천 시스템에서 가장 널리 활용하는 기법은 협동적 여과 기법이며, 협동적 여과 기법은 추천 대상 사용자에게 아이템을 추천할 때 유사 사용자의 평가 정보를 이용한다. 협동적 여과 기반 추천은 시스템 공격자가 악의적 목적을 가지고 아이템에 대한 평가를 조작하였을 경우 추천 성능이 저하되며, 이와 같은 추천 시스템에 대한 악의적 행위를 추천 공격이라 한다. 지속적으로 변화하는 평가 데이터를 데이터 스트림 관점에서 분석하면 추천 시스템의 공격을 예측할 수 있다. 본 논문에서는 협동적 여과 기반 추천 시스템에서 아이템 평가의 스트림 추세를 이용하여 추천 시스템에 대한 공격을 탐지하는 방법을 제안한다. 평가 데이터를 구성하는 아이템 평가 정보는 시간에 따라 수시로 변화되는 특성을 나타내기 때문에 일정 주기에 따라 아이템의 평가 변화를 측정하면 추천 시스템의 공격을 탐지할 수 있다. 본 논문에서 제안하는 기법은 연속적으로 입력되는 평가 스트림을 공격 탐지 검사 주기를 기반으로 정상적인 스트림 추세와 비교하여 비정상적인 스트림 추세를 탐지한다. 본 논문에 제안한 기법을 추천 공격에 적용하면 추천 시스템의 운용성과 평가 데이터의 재사용성을 향상시킬 수 있다. 본 논문에서 제안한 기법을 다양한 실험을 통해 효과를 확인하였다.

Keywords

References

  1. S. Lam and J. Riedl, "Shilling Recommender Systems for Fun and Profit," Proceedings of the 13th International WWW Conference, 2004.
  2. J. O'Donovan and B. Smyth, "Is Trust Robust?: An Analysis of Trust-based Recommendation," Proceedings of the 5th ACM Conference on Electronic Commerce, 2006
  3. J. Schafer, J. Konstan, and J. Riedl, "Recommender System in E-Commerce," Proceedings of the ACM Conference on Electronic Commerce, 1999.
  4. M. Pazzani, "A Framework for Collaborative, Content-based and Demographic Filtering," Artificial Intelligence Review, pp.393-408, 1999.
  5. P. Melville, R. Mooney, and R. Nagarajan, "Content-Boosted Collaborative Filtering," Proceedings of the SIGIR-2001 Workshop on Recommender Systems, 2001.
  6. U. Shardanand and P. Maes, "Social Information Filtering: Algorithms for Automating 'Word of Mouth'," Proceedings of the Conference of Human Factors in Computing Systems, 1995.
  7. J. Konstan, B. Millr, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl, "GroupLens: Applying Collaborative Filtering to Usenet News," Communications of the ACM, Vol.40, No.3, pp.77-87, 1997. https://doi.org/10.1145/245108.245126
  8. G. Linden, B. Smith, and J. York, "Amazon.com Recommendations: Item-to Item Collaborative Filtering," IEEE Internet Computing, 2003.
  9. M. Condliff, D. Lewis, D. Madigan, and C. Posse, "Baysian Mixed-Effect Models for Recommender Systems," Proceedings of the Recommender Systems Workshop at SIGIR-99, 1999.
  10. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering," Proceedings of the ACM SiGIR-99, 1999.
  11. J. Herlocker, J. Konstan, C. Tervin, and J. Riedl, "Evaluating Collaborative Filtering Recommender Systems," Proceedings of the ACM Transactions on Information Systems 22, 1, 2004.
  12. H. Kim, J. Kim, and J. L. Herlocker, "Feature- Based Prediction of Unknown Preferences for Nearest-Neighbor Collaborative Filtering," Proceedings of the 4th IEEE International Conference on Data Mining, 2004.
  13. A. Poposcul, L. Ungar, D. Pennock, and S. Lawrence, "Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments," Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001.
  14. B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-based Collaborative Filtering Recommendation Algorithms," Proceedings of the 10th International WWW Conference, 2001.
  15. P. Chirita, W. Nejdl, and C. Zamfir, "Preventing Shilling Sttacks in Online Recommender Systems," Proceedings of the 7th annual ACM International workshop on Web Information and Data Management, 2005.
  16. B. Mobasher, R. Burke, R. Bhaumik and C. Williams, "Effective Attack Models for Shilling Item-based Collaborative Filtering Systems," Proceedings of the 2005 WebKDD Workshop, 2005.
  17. G. Adomavicius and A. Tuzhilin, "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions," IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.6, pp.734-749, 2005.
  18. M. O'Mahony, N. Hurley, N. Kushmerick and G. Silvestre, "Collaborative Recommendation: A Robustness Analysis," ACM Transactions on Internet Technology Vol.4, No.4, 2004.
  19. R. Burke, B. Mobasher, and R. Bhaumik, "Limited Knowledge Shilling Attacks in Collaborative Filtering Systems," Proceedings of the 3rd IJCAI Workshop in Intelligent Techniques for Personalization, 2005.
  20. R. Burke, B. Mobasher, C. Williams, and R. Bhaumik, "Classification Features for Attack Detection in Collaborative Recommender Systems," Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2006.
  21. C. Dellarocas, "Immunizing Online Reputation Reporting Systems against Unfair Ratings and Discriminatory Behavior," Proceedings of the ACM Conference on Electronic Commerce, 2000.