DOI QR코드

DOI QR Code

Agrobacterium tumefaciens와 Tumor-inducing 플라스미드에 의한 virulence 유전자의 발현

Effects of Agrobacterium tumefaciens and Tumor-inducing plasmid on the virulence gene expression

  • 투고 : 2010.08.09
  • 심사 : 2010.11.05
  • 발행 : 2011.04.30

초록

본 연구에서는 vir유전자의 발현에 있어서 페놀화합물, Ti 플라스미드들의 종류(cctopine, nopaline), A. tumefaciens 들의 영향에 대해서 조사하였다. 9종류의 페놀화합물들을 3종류의 A. tumefaciens들과 3종류의 Ti 플라스미드들을 대상으로 조사하였다. Nopaline Ti 플라스미드를 포함하는 A. tumefaciens MW107에 존재하는 vir유전자는 4-hydroxyacetophenone, phenol, catechol, resorcinol, acetosyringone과 vanillin등 6종류의 페놀화합물들에 의해서 상대적으로 높게 발현되었다. Octopine Ti 플라스미드들을 포함하는 A. tumefaciens MW105와 MW108의 vir유전자들은 acetosyringone에서만 발현되었다. 따라서 vir유전자의 발현을 유도시키는 요인들은 Ti 플라스미드 종류, A. tumefaciens와 페놀화합물들의 종류에 따라서 서로 다르다는 결과를 얻었다.

We examined the effects of various phenolic compounds, Ti plasmids(octopine, nopaline) and A. tumefaciens on the vir gene expression. Nine phenolic compounds were tested using 3 types of Ti plasmid and 3 strains of A. tumefaciens on the vir gene expression. It was also investigated how the levels of vir gene expression could be related to specific phenolic compounds. Six phenolic compounds as 4-hydroxyacetophenone, phenol, catechol, resorcinol, acetosyringone and vanillin had exhibited a strong effect on the vir gene expression of A. tumefaciens MW107 containing nopaline Ti plasmid. The vir genes of A. tumefaciens MW105 and MW108 containing octopine Ti plasmids were remarkably stimulated only by acetosyringone. Thus, it appeared that the vir gene inducing abilities were differed by the kinds of phenolic compounds, A. tumefaciens and Ti plasmids.

키워드

참고문헌

  1. S. B. Gelvin, "Agrobacterium-Mediated Plant Transformation", Mic. Mol. Bio. Rev. vol. 67(1), pp. 16-17, 2003. https://doi.org/10.1128/MMBR.67.1.16-37.2003
  2. L. Valentine, "Agrobacterium tumefaciens and the Plant; the David and Goliath Modern Genetics", Plant Physiology, vol. 133, pp. 948-955, 2003. https://doi.org/10.1104/pp.103.032243
  3. B. Schrammeijer, A. den Dulk-Ras, A. Vergunst, E. J. Jacome, and P. J. Hooykaas, "Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model", Nucleic Acids Res vol 31, pp 860-868, 2003. https://doi.org/10.1093/nar/gkg179
  4. F. Dumas, M. Duckley, P. Pelczar, P. Van Gelder, and B. Hohn, "An Agribacterium VirE2 channel for transferred-DNA transport into plant cells", Proc Natl Acad Sci USA, vol 16, pp 485-490, 2001.
  5. H. Van Attikum, P. Bundock, and P. J. Hooykaas, "Non-homologous end-joining proteins are required Agrobacterium T-DNA integration", EMBO J. vol 20, pp 6550-6558, 2001. https://doi.org/10.1093/emboj/20.22.6550
  6. A. Ziemienowicz, F. Merkle, B. Schoumacher, B. Hohn, and L. Ross., "Import of Agrobacterium T-DNA into plant nuclei", Plant Cell, vol 13, pp 369-384, 2001. https://doi.org/10.1105/tpc.13.2.369
  7. C. R. Francisca, S. Beimeng, G. Hena, G. Darren, and M. S. Otegui, "Agrobacterium tumefaciens -Mediated Transformation of Maize Endosperm as a Tool to study Endosperm cell Biology", Plant Physiology, vol 153, pp 624-631, 2010. https://doi.org/10.1104/pp.110.154930
  8. V. Pandey, P. Misra, P. Chaturvedi, M. K. Mishra, P. K. Trivedi, and R. Tuli, "Agrobacterium tumefaciens-mediated transformation of Withania somnifera Dunal", Plant Cell Rep. vol. 29, pp 133-141, 2010. https://doi.org/10.1007/s00299-009-0805-0
  9. L. Lee, "Integration of genes into the chromosome of Agrobacterium tumefaciens C58", Met. Mol. Biol. vol. 343, pp. 55-66, 2006.
  10. J, S. Eum and Y. D. Park, Influence of phenolic compounds on vir gene expression in various Agrobacterium tumefaciens. Kor. J. Soil Sci. Fert. vol. 33, pp. 253-260, 2000.
  11. S. Stachel, G. An, C. Flores and E. W. Nester, "A Tn3 lacZ transposon for random generation of ${\beta}$-galactosidase gene fusion: application to the analysis of gene expression in Agrobacterium.", EMBO J. vol 4, pp. 891-898. 1985.