DOI QR코드

DOI QR Code

Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells

  • Li, Chunmei (College of Biomedical Science, Kangwon National University) ;
  • Wang, Myeong-Hyeon (College of Biomedical Science, Kangwon National University)
  • Received : 2010.11.26
  • Accepted : 2011.03.31
  • Published : 2011.04.28

Abstract

The hawthorn fruit (Crataegus pinnatifida Bunge var. typica Schneider) is used as a traditional medicine in Korea. The objective of this study was to understand the mechanisms of the anti-inflammatory effects of the water fractionated portion of hawthorn fruit on a lipopolysaccharide (LPS)-stimulated RAW 264.7 cellular model. The level of nitric oxide (NO) production in the water fraction and LPS-treated RAW 264.7 cells were determined with an ELISA. The cytotoxicity of the water fraction and LPS was measured with an MTT assay. Expression of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-${\alpha}$, interleukin 6 (IL-6), and interleukin $1{\beta}$ (IL-$1{\beta}$) mRNA were analyzed with a reverse transcription polymerase chain reaction (RT-PCR). The water fraction of hawthorn fruit was determined to be safe and significantly inhibited NO production in LPS-stimulated RAW 264.7 cells and suppressed COX-2, (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-6 expression. The observed anti-inflammatory effects of the water fraction of hawthorn fruit might be attributed to the down-regulation of COX-2, (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-6 expression in LPS-stimulated RAW 264.7 cells.

Keywords

References

  1. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1 ${\beta]$ generation. Clin Exp Immunol 2007;147:227-35.
  2. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999;145:33-43. https://doi.org/10.1016/S0021-9150(99)00011-8
  3. Jara LJ, Medina G, Vera-Lastra O, Amigo MC. Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases. Autoimmun Rev 2006;5:195-201. https://doi.org/10.1016/j.autrev.2005.06.005
  4. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006;124:823-35. https://doi.org/10.1016/j.cell.2006.02.016
  5. Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Lett 2006;236:13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  6. Walsh LJ. Mast cells and oral inflammation. Crit Rev Oral Biol Med 2003;14:188-98. https://doi.org/10.1177/154411130301400304
  7. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:281-6. https://doi.org/10.2174/1568010054022024
  8. Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating $NF-_{\kappa]B$ through the suppression of p65 phosphorylation. J Immunol 2007;179:7121-7.
  9. Hortelano S, Zeini M, Boscá L. Nitric oxide and resolution of inflammation. Methods Enzymol 2002;359:459-65.
  10. Sacco RE, Waters WR, Rudolph KM, Drew ML. Comparative nitric oxide production by LPS-stimulatedmonocyte-derived macrophages from Ovis canadensis and Ovis aries. Comp Immunol Microbiol Infect Dis 2006;29:1-11. https://doi.org/10.1016/j.cimid.2005.11.001
  11. Farley KS, Wang LF, Razavi HM, Law C, Rohan M, Mc Cormack DG, Mehta S. Effects of macrophage inducible nitric oxide synthase in murine septic lung injury. Am J Physiol Lung Cell Mol Physiol 2006;290:L1164-72. https://doi.org/10.1152/ajplung.00248.2005
  12. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 1993;90:7240-4. https://doi.org/10.1073/pnas.90.15.7240
  13. Yoon WJ, Ham YM, Kim KN, Park SY, Lee NH, Hyun CG, Lee WJ. Anti-inflammatory activity of brown alga Dictyota dichotoma in murine macrophage RAW 264.7 cells. J Med Plant Res 2009;3:1-8. https://doi.org/10.3923/rjmp.2009.1.8
  14. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest 2006;116:33-5.
  15. Pryor WA. The antioxidant nutrients and disease prevention-what do we know and what do we need to find out? Am J Clin Nutr 1991;53:391S-3S.
  16. Rigelsky JM, Sweet BV. Hawthorn: pharmacology and therapeutic uses. Am J Health Syst Pharm 2002;59:417-22.
  17. Zhang Z, Ho WKK, Huang Y, James AE, Lam LW, Chen ZY. Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. J Nutr 2002;132:5-10.
  18. Froehlicher T, Hennebelle T, Martin-Nizard F, Cleenewerck P, Hilbert JL, Trotin F, Grec S. Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chem 2009;115:897-903. https://doi.org/10.1016/j.foodchem.2009.01.004
  19. Kim KM, Choi JY, Yoo SE, Park MY, Lee BS, Ko TH, Sung SH, Shin HM, Park JE. HMCO5, herbal extract, inhibits $NF-_{\kappa}B$ expression in lipopolysaccharide treated macrophages and reduces atherosclerotic lesions in cholesterol fed mice. J Ethnopharmacol 2007;114:316-24. https://doi.org/10.1016/j.jep.2007.08.029
  20. Ko SH, Choi SW, Ye SK, Yoo S, Kim HS, Chung MH. Comparison of anti-oxidant activities of seventy herbs that have been used in Korean traditional medicine. Nutr Res Pract 2008;2:143-51. https://doi.org/10.4162/nrp.2008.2.3.143
  21. Park JH, Li C, Hu W, Wang MH. Antioxidant and free radical scavenging activity of different fractions from hawthorn fruit. J Food Sci Nutr 2010;15:44-50. https://doi.org/10.3746/jfn.2010.15.1.044
  22. Li C, Son HJ, Huang C, Lee SK, Lohakare J, Wang MH. Comparison of Crataegus pinnatifida Bunge var. typica Schneider and C. pinnatifida Bunge fruits for antioxidant, $anti-{\alpha]-glucosidase, $and anti-inflammatory activities. Food Sci Biotechnol 2010;19:769-75. https://doi.org/10.1007/s10068-010-0108-9
  23. Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun 1993;191:1301-8. https://doi.org/10.1006/bbrc.1993.1359
  24. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323-50. https://doi.org/10.1146/annurev.immunol.15.1.323
  25. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424-37.
  26. Li XA, Guo L, Asmis R, Nikolova-Karakashian M, Smart EJ. Scavenger receptor BI prevents nitric oxide-induced cytotoxicity and endotoxin-induced death. Circ Res 2006;98:e60-5. https://doi.org/10.1161/01.RES.0000219310.00308.10
  27. Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. IFSET 2009;10:228-34.
  28. Bosca L, Zeini M, Traves PG, Hortelano S. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 2005;208:249-58. https://doi.org/10.1016/j.tox.2004.11.035
  29. Sarkar D, Saha P, Gamre S, Bhattacharjee S, Hariharan C, Ganguly S, Sen R, Mandal G, Chattopadhyay S, Majumdar S, Chatterjee M. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the $NF-_{\kappa]B$ pathway. Int Immunopharmacol 2008;8:1264-71. https://doi.org/10.1016/j.intimp.2008.05.003
  30. Hori M, Kita M, Torihashi S, Miyamoto S, Won KJ, Sato K, Ozaki H, Karaki H. Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 2001;280:G930-8.
  31. Li C, Han W, Wang MH. Antioxidant activity of hawthorn fruit in vitro. J Appl Biol Chem 2010;53:8-12. https://doi.org/10.3839/jabc.2010.002
  32. Perkins DJ, Kniss DA. Blockade of nitric oxide formation downregulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 1999;65:792-9.
  33. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006;38:1654-61. https://doi.org/10.1016/j.biocel.2006.03.021
  34. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Ann Rev Immunol 1999;17:331-67. https://doi.org/10.1146/annurev.immunol.17.1.331
  35. Aggarwal BB, Natarajan K. Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw 1996;7:93-124.
  36. Kim JY, Park SJ, Yun KJ, Cho YW, Park HJ, Lee KT. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kB in RAW264.7 macrophages. Eur J Pharmacol 2008;584:175-84. https://doi.org/10.1016/j.ejphar.2008.01.032
  37. Jung WK, Choi I, Lee DY, Yea SS, Choi YH, Kim MM, Park SG, Seo SK, Lee SW, Lee CM, Park YM, Choi IW. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kB pathways. Int J Biochem Cell Biol 2008;40:2572-82. https://doi.org/10.1016/j.biocel.2008.05.005
  38. Cheenpracha S, Park EJ, Yoshida WY, Barit C, Wall M, Pezzuto JM, Chang LC. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem 2010;18:6598-602. https://doi.org/10.1016/j.bmc.2010.03.057
  39. Mueller M, Hobiger S, Jungbauer A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem 2010;122:987-99. https://doi.org/10.1016/j.foodchem.2010.03.041

Cited by

  1. Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-κB activation in Caco-2 and SW480 human colon cancer cells vol.108, pp.09, 2012, https://doi.org/10.1017/S0007114511007227
  2. 2,5-Dihydroxyacetophenone Isolated from Rehmanniae Radix Preparata Inhibits Inflammatory Responses in Lipopolysaccharide-Stimulated RAW264.7 Macrophages vol.15, pp.6, 2012, https://doi.org/10.1089/jmf.2011.1940
  3. roscoe Constituent 12-Dehydrogingerdione in Lipopolysaccharide-stimulated Raw 264.7 Cells vol.27, pp.8, 2012, https://doi.org/10.1002/ptr.4847
  4. Novel Anti-inflammatory Activity of Epoxyazadiradione against Macrophage Migration Inhibitory Factor vol.287, pp.29, 2012, https://doi.org/10.1074/jbc.M112.341321
  5. Usage in Cardiovascular Disease Prevention: An Evidence-Based Approach vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/149363
  6. (Loureiro) Merrill vol.38, pp.1, 2014, https://doi.org/10.1111/jfbc.12028
  7. Nardostachys jatamansi (D. Don) DC prevents LPS-induced inflammation in RAW 264.7 macrophages by preventing ROS production and down-regulating inflammatory gene expression vol.23, pp.3, 2014, https://doi.org/10.1007/s10068-014-0121-5
  8. vol.8, pp.3, 2014, https://doi.org/10.4162/nrp.2014.8.3.267
  9. Anti-Inflammatory Activity of Natural Products vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101321
  10. vol.5, pp.3, 2016, https://doi.org/10.1002/fsn3.416
  11. In vitro antioxidant and anti–inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts vol.4, pp.10, 2014, https://doi.org/10.12980/APJTB.4.2014C1008
  12. ) in healthy volunteers: A randomized controlled trial vol.32, pp.8, 2018, https://doi.org/10.1002/ptr.6094
  13. Celastrol attenuates adipokine resistin‐associated matrix interaction and migration of vascular smooth muscle cells vol.114, pp.2, 2011, https://doi.org/10.1002/jcb.24374
  14. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages vol.11, pp.suppl4, 2011, https://doi.org/10.4103/0973-1296.172961
  15. Comparation of Hypolipidemic and Antioxidant Effects of Aqueous and Ethanol Extracts of Crataegus pinnatifida Fruit in High-Fat Emulsion-Induced Hyperlipidemia Rats vol.12, pp.45, 2011, https://doi.org/10.4103/0973-1296.176049
  16. Efficacy of traditional Chinese medication Tangminling pill in Chinese patients with type 2 diabetes vol.39, pp.4, 2011, https://doi.org/10.1042/bsr20181729
  17. Roles and Mechanisms of Hawthorn and Its Extracts on Atherosclerosis: A Review vol.11, pp.None, 2011, https://doi.org/10.3389/fphar.2020.00118
  18. The Enhanced Pharmacological Effects of Modified Traditional Chinese Medicine in Attenuation of Atherosclerosis Is Driven by Modulation of Gut Microbiota vol.11, pp.None, 2011, https://doi.org/10.3389/fphar.2020.546589
  19. Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn ( Crataegus spp.) Fruits Species for Potential Use in Food Applications vol.9, pp.4, 2011, https://doi.org/10.3390/foods9040436
  20. Hawthorn (Crataegus spp.): An Updated Overview on Its Beneficial Properties vol.11, pp.5, 2020, https://doi.org/10.3390/f11050564
  21. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases vol.12, pp.3, 2011, https://doi.org/10.1039/d0fo02433c
  22. Distribution, Metabolism, Excretion and Toxicokinetics of Vitexin in Rats and Dogs vol.18, pp.None, 2011, https://doi.org/10.2174/1573412917666210809154537
  23. Targeting interleukin‐β by plant‐derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease vol.35, pp.10, 2011, https://doi.org/10.1002/ptr.7194
  24. Treating unstable angina with detoxifying and blood-activating formulae: A randomized controlled trial vol.281, pp.None, 2011, https://doi.org/10.1016/j.jep.2021.114530