DOI QR코드

DOI QR Code

On the System Modeling and Capacity Scaling Law in Underwater Ad Hoc Networks

수중 애드 혹 네트워크에서의 시스템 모델링 및 용량 스케일링 법칙에 대하여

  • Received : 2011.01.27
  • Accepted : 2011.03.22
  • Published : 2011.04.30

Abstract

In this paper, we introduce system and channel modeling for an underwater ad hoc acoustic network with n regularly located nodes, and then analyze capacity scaling laws based on the model. A narrow-band model is assumed where the carrier frequency is allowed to scale as a function of n. In the network, we characterize in attenuation parameter that depends on the frequency scaling as well as the transmission distance. A cut-set upper bound on the throughput scaling is then derived in extended networks having unit node density. Our result indicates that the upper bound is inversely proportional to the attenuation parameter, thus resulting in a power-limited network. Furthermore, we describe an achievable scheme based on the simple nearest-neighbor multi-hop (MH) transmission. It is shown under extended networks that the MH scheme is order-optimal for all the operating regimes expressed as functions of the attenuation parameter.

본 논문에서는 n개의 균등하게 위치한 센서 노드를 가지는 수중 애드 혹 음향 네트워크에서의 시스템 및 채널 모델링, 그리고 이를 바탕으로 유도한 용량 스케일링 법칙을 소개한다. 특히 협 대역 모델에서 캐리어 주파수가 n의 함수로 스케일 되는 것을 허용하는 상황을 가정한다. 가정하는 네트워크에서, 전송 거리 뿐 아니라 주파수 스케일링에도 의존하는 감쇠 변수의 특성을 분석한다. 이를 바탕으로 단일 노드 밀도를 가지는 확장 네트워크 하에서 용량 스케일링에 대한 cut-set 기반 상향 경계선을 유도한다. 상향 경계선은 감쇠 변수에 역으로 비례한다는 결과물로부터, 전 영역에 대해 전력 제한된 네트워크가 생성됨을 보인다. 뿐만 아니라 간단한 최 근거리 다중 홉 전송에 기반 하여 용량 달성 가능한 기술을 소개한다. 확장 네트워크에서 다중 홉 기술은 감쇠 변수의 함수로 표현되는 모든 동작 영역에서 order 측면 최적임을 보인다.

Keywords

References

  1. P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Trans. Inf. Theory, Vol.46, pp.388-404, Mar., 2000. https://doi.org/10.1109/18.825799
  2. M. Franceschetti, O. Dousse, D. N. C. Tse, and P. Thiran, "Closing the gap in the capacity of wireless networks via percolation theory," IEEE Trans. Inf. Theory, Vol.53, pp.1009-1018, Mar., 2007. https://doi.org/10.1109/TIT.2006.890791
  3. A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, "Optimal throughput-delay scaling in wireless networks-Part I: The fluid model," IEEE Trans. Inf. Theory, Vol.52, pp.2568-2592, Jun., 2006. https://doi.org/10.1109/TIT.2006.874379
  4. A. Ozgur, O. Leveque, and D. N. C. Tse, "Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks," IEEE Trans. Inf. Theory, Vol.53, pp.3549-3572, Oct., 2007. https://doi.org/10.1109/TIT.2007.905002
  5. M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communication channel", ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), Vol.11, pp.34-43, Oct., 2007. https://doi.org/10.1145/1347364.1347373
  6. D. E. Lucani, M. Medard, and M. Stojanovic, "Underwater acoustic networks: Channel models and network coding based lower bound to transmission power for multicast," IEEE J. Select. Areas Commun., Vol.26, pp.1709-1719, Dec., 2008.
  7. Z. Guo, P. Xie, J. H. Cui, and B. Wang, "On applying network coding to underwater sensor networks," in Proc. Int. Workshop on Underwater Networks (WUWNet), Los Angeles, CA, Sep., 2006.
  8. D. E. Lucani, M. Medard, and M. Stojanovic, "Network coding schemes for underwater networks: The benefits of implicit acknowledgement," in Proc. Int. Workshop on Underwater Networks (WUWNet), Montreal, Canada, Sep., 2007.
  9. D. E. Lucani, M. Medard, and M. Stojanovic, "Capacity scaling laws for underwater networks," in Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Oct., 2008, pp.2125-2129.
  10. A. Ozgur, R. Johari, D. N. C. Tse, and O. Leveque, "Linear capacity scaling in wireless networks: Beyond physical limits?," in Proc. Inf. Theory and Applications Workshop (ITA), San Diego, CA, Jan./Feb. 2010, pp.1-10.
  11. L.-L. Xie and P. R. Kumar, "A network information theory for wireless communication: Scaling laws and optimal operation," IEEE Trans. Inf. Theory, Vol.50, pp.748-767, May 2004. https://doi.org/10.1109/TIT.2004.826631
  12. A. Jovicic, P. Viswanath, and S. R. Kulkarni, "Upper bounds to transport capacity of wireless networks," IEEE Trans. Inf. Theory, Vol.50, pp. 2555-2565, Nov. 2004. https://doi.org/10.1109/TIT.2004.836936
  13. T. M. Cover and J. A. Thomas, Elements of Information Theory, New York: Wiley, 1991.
  14. A. Ozgur, R. Johari, D. N. C. Tse, and O. Leveque, "Information theoretic operating regimes of large wireless networks," IEEE Trans. Inf. Theory, Vol.56, pp.427-437, Jan., 2010. https://doi.org/10.1109/TIT.2009.2034819
  15. F. D. Neeser and J. L. Massey, "Proper complex random processes with applications to information theory," IEEE Trans. Inf. Theory, Vol.39, pp.1293-1302, Jul., 1993. https://doi.org/10.1109/18.243446