DOI QR코드

DOI QR Code

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks

무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘

  • 강승호 (국가수리과학연구소 융복합수리과학연구부) ;
  • 최명수 (목포대학교 중점연구소) ;
  • 정민아 (목포대학교 컴퓨터공학부) ;
  • 이성로 (목포대학교 중점연구소)
  • Received : 2010.06.03
  • Accepted : 2011.03.29
  • Published : 2011.04.30

Abstract

Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.

무선 센서 & 액터 네트워크에서 긴 네트워크의 수명을 유지하면서 다양한 지연시간을 요구하는 응용 프로그램들을 동시에 서비스하는 라우팅 방법이 요구되고 있다. 하지만 트리 기반 라우팅에서 네트워크 수명과 패킷 전송시의 평균 홉 수는 상충관계가 있다는 사실이 알려져 있다. 본 논문은 상충관계에 있는 두 가지 목적을 최적화하는 라우팅 트리들의 파레토 집합을 찾고자 파레토 개미 집단 최적화 알고리즘을 제시한다. 응용 프로그램이 요구하는 지연 시간에 따라 적절한 트리를 선택하여 라우팅에 사용할 수 있도록 함으로써 다양한 응용 프로그램의 요구 조건을 만족시킬 뿐 아니라 긴 네트워크의 수명을 보장한다. 그리고 모의실험을 통해 구해진 트리들이 대표적인 라우팅 트리인 최소신장트리 보다 파레토 최적에 근접한 트리들로 구성됨을 보인다.

Keywords

References

  1. K. Akkaya and M. Younis, "A Survey on Routing Protocols for Wireless Sensor Networks," Ad Hoc Networks, Vol.3, pp.325-349, May 2005. https://doi.org/10.1016/j.adhoc.2003.09.010
  2. I. F. Akyildiz, et al., "Wireless sensor networks: a survey," Computer Networks, vol. 38, pp. 393-422, Mar. 2002. https://doi.org/10.1016/S1389-1286(01)00302-4
  3. I. F. Akyildiz, et al., "Wireless sensor and actor networks: research challenges," Ad Hoc Networks, vol. 2, pp. 351-367, 2004. https://doi.org/10.1016/j.adhoc.2004.04.003
  4. I. F. Akyildiz, et al., "A survey on wireless multimedia sensor networks," Computer Networks, Vol.51, pp.921-960, 2007 https://doi.org/10.1016/j.comnet.2006.10.002
  5. A. Boulis, M. Srivastava, "Node-level Energy Management for Sensor Networks in the Presence of Multiple Applications," In Proc. of IEEE Intl. Conf. on Pervasive Computing and Communications, pp.41-49, 2003.
  6. K. F. Doerner, et al., "Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection," European Journal of Operational Research, Vol. 171, pp.830-841, 2006. https://doi.org/10.1016/j.ejor.2004.09.009
  7. M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative learning approach to the traveling salesman problem," IEEE Transactions on Evolutionary Computation, Vol.1, pp.53-66, 1997. https://doi.org/10.1109/4235.585892
  8. M. Dorigo, et al., "The ant system: optimization by a colony of cooperating agents," IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol.26, pp.29-41, 1996. https://doi.org/10.1109/3477.484436
  9. M. Fischermann, et al., "Wiener index versus maximum degree in trees," Discrete Applied Mathematics, Vol.122, pp.127-137, 2002. https://doi.org/10.1016/S0166-218X(01)00357-2
  10. D. Ganesan, et al., "Networking Issues in Wireless Sensor Networks," Journal of Parallel and Distributed Computing, Vol.64, pp.799-814, July 2004. https://doi.org/10.1016/j.jpdc.2004.03.016
  11. W. R. Heinzelman, et al., "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," In Proc. of the 33rd Hawaii International Conference on System Sciences, pp.1-10, 2000.
  12. J. Horn, et. al., "A Niched Pareto Genetic Algorithm for Multiobjective Optimization," In Proc. of the 1st IEEE Conference on Evolutionary Computation, pp.82-87, 1994.
  13. S. Hussain and O. Islam, "An Energy Efficient Spanning Tree Based Multi-hop Routing in Wireless Sensor Networks," In Proc. of Wireless Communications and Networking Conference, pp.4383-4388, 2007.
  14. J. C. Kuo and W. Liao, "Hop Count Distribution of Multihop Paths in Wireless Networks With Arbitrary Node Density: Modeling and Its Applications," IEEE Transactions on Vehicular Technology, Vol.56, pp.2321-2331, 2007. https://doi.org/10.1109/TVT.2007.897663
  15. M. Perillo, W. Heinzelman, "Sensor Management Policies to provide application QoS," Ad Hoc Networks, Vol.1(2-3), pp.235-246, 2003. https://doi.org/10.1016/S1570-8705(03)00004-0
  16. S. Upadhyayula, S. K. S. Gupta, "Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (DAC) in wireless sensor networks," Ad Hoc Networks 5, pp.626-648, 2007. https://doi.org/10.1016/j.adhoc.2006.04.004
  17. 김정현 외., "무선 센서네트워크에서 다양한 지연시간을 갖는 라우팅 트리 제공을 위한 적소 파레토 유전자 알고리즘," 2010년도 한국통신학회 하계 종합학술발표회 논문집, pp.72-73, 2010.