DOI QR코드

DOI QR Code

An Investigation of Synoptic Condition for Clear-Air Turbulence (CAT) Events Occurred over South Korea

한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구

  • Min, Jae-Sik (Department of Atmospheric Sciences, Yonsei University) ;
  • Chun, Hye-Yeong (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jung-Hoon (Department of Atmospheric Sciences, Yonsei University)
  • Received : 2010.11.04
  • Accepted : 2011.02.22
  • Published : 2011.03.30

Abstract

The synoptic condition of clear-air turbulence (CAT) events occurred over South Korea is investigated, using the Regional Data Assimilation and Prediction System (RDAPS) data obtained from the Korea Meteorological Agency (KMA) and pilot reports (PIREPs) collected by Korea Aviation Meteorological Agency (KAMA) from 1 Dec. 2003 to 30 Nov. 2008. Throughout the years, strong subtropical jet stream exists over the South Korea, and the CAT events frequently occur in the upper-level frontal zone and subtropical jet stream regions where strong vertical wind shears locate. The probability of the moderate or greater (MOG)-level turbulence occurrence is higher in wintertime than in summertime, and high probability region is shifted northward across the jet stream in wintertime. We categorize the CAT events into three types according to their generation mechanisms: i) upper-level front and jet stream, ii) anticyclonically sheared and curved flows, and iii) breaking of mountain waves. Among 240 MOG-level CAT events reported during 2003-2008, 103 cases are related to jet stream while 73 cases and 25 cases are related to the anticyclonic shear flow and breaking of mountain wave, respectively.

Keywords

References

  1. 김정훈, 전혜영, 장욱, R. Sharman, 2009: 한국의 청천난류 예보 시스템에 대한 연구. Part II: Graphical Turbulence Guidance (GTG) 시스템, 대기, 19(3), 269-287.
  2. 장욱, 전혜영, 김정훈, 2009: 한국의 청천난류 예보 시스템에 대한 연구. Part I: 한국형 통합 난류 예측 알고리즘, 대기, 19(3), 255-268.
  3. 전혜영, 정준희, 오재호, 김정우, 1996: 대기 대순환에 미치는 중력파 항력의 효과, 한국기상학회지, 32(4), 581-592.
  4. Baughman, E. E., Jr., 1946: Turbulence with a stable lapse rate. Bull. Amer. Meteor. Soc., 27, 459-462.
  5. Bluestein, H. B., 1993: Observations and Theory of Weather System. Vol. II. Synoptic-Dynamic Meteorology in midlatitudes, Oxford University Press, 594 pp.
  6. Colson, D., 1963: Analysis of clear-air turbulence data for March 1962. Mon. Wea. Rev., 91, 73-82. https://doi.org/10.1175/1520-0493(1963)091<0073:AOCATD>2.3.CO;2
  7. Colson, D., and H. A. Panofsky, 1965: An index of clear-air turbulence. Quart. J. Roy. Meteor. Soc. 91, 507-513. https://doi.org/10.1002/qj.49709139010
  8. Cornman, L. B., C. S. Morse, and G. Cunning, 1995: Realtime estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircraft, 32, 171-177. https://doi.org/10.2514/3.46697
  9. Cornman, L. B., G. Meymaris, and M. Limber, 2004: An update on the FAA Aviation Weather Research Program's in situ turbulence measurement and reporting system. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., CDROM, P4.3.
  10. Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain wave-induced rotors. J. Atmos. Sci., 59, 186-201. https://doi.org/10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2
  11. Doyle, J. D., M. A. Shapiro, Q. Jiang, and D. L. Bartels, 2005: Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci., 62, 3106-3126. https://doi.org/10.1175/JAS3528.1
  12. Dutton, J., and H. A. Panofsky, 1970: Clear-air turbulence: A mystery may be unfolding. Science, 167, 937-944. https://doi.org/10.1126/science.167.3920.937
  13. Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geophys. Publ., Oslo, 22(3), 1-23.
  14. Ellrod, G. P., and D. L. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150-165. https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2
  15. Ellrod, G. P., P. F. Lester, and L. J. Ehernberger, 2003: Clear air turbulence. In Encyclopedia of Atmospheric Sciences, vol. 1, edited by J. R. Holton et al., Academic Press, 393-403.
  16. Frehich, R. and R. Sharman, 2004: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev., 132, 2308-2324. https://doi.org/10.1175/1520-0493(2004)132<2308:EOTFNW>2.0.CO;2
  17. Jaeger, E. B., and M. Sprenger, 2007: A northern hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data. J. Geophys. Res, 112, D20106, doi:10.1029/ 2006JD008189.
  18. Kaplan, M. L., J. J. Charney, K. T. Waight III, K. M. Lux, J. D. Cetola, A. W. Huffman, A. J. Riordan, S. D. Slusser, M. T. Kiefer, P. S. Suffern, and Y. L. Lin, 2006: Characterizing the severe turbulence environments associated with commercial aviation accidents. A realtime turbulence model (RTTM) designed for the operational prediction of hazardous aviation turbulence environments. Meteor. Atmos. Phys., 94, 235-270. https://doi.org/10.1007/s00703-005-0181-4
  19. Kim, J. H., and H. Y. Chun, 2010: A Numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 2381-2403. https://doi.org/10.1175/2010JAMC2449.1
  20. Kim, J. H., and H. Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311-324. https://doi.org/10.1175/2010JAMC2492.1
  21. Knox, J. A., 1997: Possible mechanism of clear-air turbulence in strongly anticyclonic flow. Mon. Wea. Rev., 125, 1251-1259. https://doi.org/10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2
  22. Lee, Y. G., B. C. Choi, R. Sharman, G. Wiener, and H. W. Lee, 2003: Determination of the primary diagnostics for the CAT (clear-air turbulence) forecast in Korea. J. Kor. Meteor. Soc., 39, 677-688.
  23. Lester, P. F., 1994: Turbulence: A New Perspective for Pilots. Jeppesen Sanderson, 212 pp.
  24. Marroquin, A., 1998: An advanced algorithm to diagnose atmospheric turbulence using numerical model output. Preprint, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 79-91.
  25. National Transportation Safety Board, 2009: U.S. Air Carrier Operations, Calendar Year 2005. Annual review of aircraft accident data. NTSB/ARC-09/01, Washington, D. C.
  26. Petterssen, S., 1956: Weather Analysis and Forecasting. Vol. 1. McGraw-Hill, 428 pp.
  27. Roach, W. T., 1970: On the influence of synoptic development on the production of high level turbulence. Quart. J. Roy. Meteor. Soc., 96, 413-429. https://doi.org/10.1002/qj.49709640906
  28. Sharman, R., C. Tebaldi, and B. Brown, 1999: An integrated approach to clear-air turbulence forecasting. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 68-71.
  29. Sharman, R., C. Tebaldi, J. Wolff, and G. Wiener, 2002: Results from the NCAR Integrated Turbulence Forecasting Algorithm (ITFA) for predicting upper-level clear-air turbulence. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 351- 354.
  30. Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268-287. https://doi.org/10.1175/WAF924.1
  31. Sparks, W. R., S. G. Cornford, and J. K. Gibson, 1977: Bumpiness in clear air and its relation to some synopticscale indices. Geophysical Memoirs 121, 53 pp.
  32. Tung, K. K., and W. W. Orlando, 2003: The $k^{-3}$ and $k^{-5/3}$ energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824-835. https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2
  33. Van Yuly, A. H., and J. A. Young, 1982: Numerical simulation of nonlinear jet streak adjustment. Mon. Wea. Rev., 110, 2038-2054. https://doi.org/10.1175/1520-0493(1982)110<2038:NSONJS>2.0.CO;2