DOI QR코드

DOI QR Code

Construction of the Regional Prediction System using a Regional Climate Model and Validation of its Wintertime Forecast

지역기후모델을 이용한 상세계절예측시스템 구축 및 겨울철 예측성 검증

  • Kim, Moon-Hyun (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Kang, Hyun-Suk (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Byun, Young-Hwa (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Park, Suhee (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Kwon, Won-Tae (Climate Research Lab., National Institute of Meteorological Research, KMA)
  • 김문현 (국립기상연구소 기후연구과, 기상청) ;
  • 강현석 (국립기상연구소 기후연구과, 기상청) ;
  • 변영화 (국립기상연구소 기후연구과, 기상청) ;
  • 박수희 (국립기상연구소 기후연구과, 기상청) ;
  • 권원태 (국립기상연구소 기후연구과, 기상청)
  • Received : 2010.07.26
  • Accepted : 2011.03.14
  • Published : 2011.03.30

Abstract

A dynamical downscaling system for seasonal forecast has been constructed based on a regional climate model, and its predictability was investigated for 10 years' wintertime (December-January-February; DJF) climatology in East Asia. Initial and lateral boundary conditions were obtained from the operational seasonal forecasting data, which are realtime output of the Global Data Assimilation and Prediction System (GDAPS) at Korea Meteorological Administration (KMA). Sea surface temperature was also obtained from the operational forecasts, i.e., KMA El-Nino and Global Sea Surface Temperature Forecast System. In order to determine the better configuration of the regional climate model for East Asian regions, two sensitivity experiments were carried out for one winter season (97/98 DJF): One is for the topography blending and the other is for the cumulus parameterization scheme. After determining the proper configuration, the predictability of the regional forecasting system was validated with respect to 850 hPa temperature and precipitation. The results showed that mean fields error and other verification statistics were generally decreased compared to GDAPS, most evident in 500 hPa geopotential heights. These improved simulation affected season prediction, and then HSS was better 36% and 11% about 850 hPa temperature and precipitation, respectively.

Keywords

References

  1. 기상연구소, 2005 : 슈퍼앙상블 계절예측시스템 연구(II). 기상연구소 연구소보고서, MR050C05, 534pp.
  2. 기상청, 2002: 장기예보 및 평가 체계 개선. 기상청 기후국 기술노트, 2002-12, 85pp.
  3. 박훈, 박병권, 나득균, 조주영, 2002: 2001년도 전지구 예보 시스템의 개선사항. 기상청 수치예보과 기술노트, 2002-1, 81pp.
  4. Alfaro, S. C., and L. Gomes, 2001: Modeling nineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas. J. Geophys. Res., 128, 689-708.
  5. Cocke, S. D., and T. E. LaRow, 2000: Seasonal Prediction using a Regional Spectral Model embedded within a Coupled Ocean-Atmosphere Model. Mon. Wea. Rev., 128, 689-708. https://doi.org/10.1175/1520-0493(2000)128<0689:SPUARS>2.0.CO;2
  6. David, Tai-Wai Hui, K. K.-Y. Shum, J. Chen, S.-C. Chen, J. Ritchie and J. O. Roads, 2007: Case studies of seasonal rainfall forecasts for Hong Kong and its vicinity using a regional climate model. Nat. Hazards, 42, 193-207. https://doi.org/10.1007/s11069-006-9068-z
  7. Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note, TN-275 + STR, 69pp.
  8. Dickinson, R. E., R. M. Errico, F. Girogi, and G. T. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383-422.
  9. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note, TN-387 + STR, 72pp.
  10. Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale model. J. Atmos. Sci., 48(21), 2313-2335. https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
  11. Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate model. J. Atmos. Sci., 56, 1766-1782. https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
  12. Fennessy, M. J., and J. Shukla, 2000: Seasonal prediction over North America with a regional model nested in a global model. J. Climate, 13, 2605-2627. https://doi.org/10.1175/1520-0442(2000)013<2605:SPONAW>2.0.CO;2
  13. Giorgi, F., and G. T. Bates, 1989: On the climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 2325-2347. https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2
  14. Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941-963. https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
  15. Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second generation regional climate model (RegCM2), Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794-2813. https://doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2
  16. Giorgi, F., M. R. Marinucci, G. T. Bates, and De Canio G, 1993b: Development of a second generation regional climate model (RegCM2), Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814-2832. https://doi.org/10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2
  17. Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 6335-6352. https://doi.org/10.1029/98JD02072
  18. Giorgi, F., X. Q. Bi, and Y. Qian, 2003a: Indirect vs. direct effects of anthropogenic sulfate on the climate of east Asia as simulated with a regional coupled climatechemistry/ aerosol model. Climate Change, 58, 346-376.
  19. Giorgi, F., R. Francisco, and J. S. Pal, 2003b: Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology part 1: Effects of temperature and water vapor disaggregation. J. Hydrometeorology, 4, 317-333. https://doi.org/10.1175/1525-7541(2003)4<317:EOASTA>2.0.CO;2
  20. Grell, G., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  21. Grell, G., J. Dudhia, and D. R. Stauffer, 1994: Description of the fifth generation Penn State/NCAR Mesoscale Model(MM5). NCAR Tech. Note, TN-398+STR, 121pp.
  22. Heidke, P., 1926: Berechnung des Erfolges und der Gute der Windstarkevorhersagen im Sturmwarnungsdienst. Geografiska Annaler, 8, 301-349.
  23. Holtslag, A. A. M., E. I. F. de Bruijin, and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561-1575. https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
  24. Hong, S.-Y., and H. M.-H. Juang, 1998: Orography blending in the lateral boundary of a regional model. Mon. Wea. Rev., 126(6), 1714-1718. https://doi.org/10.1175/1520-0493(1998)126<1714:OBITLB>2.0.CO;2
  25. Hong, S.-Y., and J. Choi, 2006: Sensitivity of the simulated regional climate circulations over East Asia in 1997 and 1998 summers to three convective parameterization schemes. J. Kor. Meteorol. Soc., 42, 361-378.
  26. IPCC, 2007: Climate Change 2007: The Physical Scientific Basis, Working group I contribution to the fourth assessment report of the intergovernmental panel on climate change, Summary for Policymakers. Cambridge University Press, Cambridge, UK, 996pp. (eds.).
  27. Kanamitsu, M., K. Tada, T. Kudo, N. Sato, and S. Isa, 1983: Description of the JMA operational spectral model. J. Meteorol. Soc. Japan, 61, 812-828. https://doi.org/10.2151/jmsj1965.61.6_812
  28. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  29. Kang, H.-S., and S.-Y. hong, 2008: Sensitivity of simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119, DOI:10.1029/2007JD009692.
  30. Kang I.-S., and J.-S. Kug, 2000: An El-Nino prediction system using an intermediate ocean and a statistical atmosphere. Geophysical Research Letter, 27, 1167- 1170. https://doi.org/10.1029/1999GL011023
  31. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Breigleb, D. Williamson, and P. Rasch, 1996: Description of the NCAR community climate model(CCM3). NCAR Tech. Note, TN-420+STR, 152pp.
  32. Kuo, S.-L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232-1240. https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
  33. Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 89-95. https://doi.org/10.1175/BAMS-84-1-89
  34. Loveland, T. R., Z. Zhu, D. O. Ohlen, J. F. Brown, B. C. Reed, and L. Yang, 1999: An analysis of the IGBP global land cover characterization process. Photogrammetric Engineering and Remote Sensing, 65(9), 1021-1031.
  35. Mitchell, K., and Coauthors, 2000a: Recent GCIP-sponsored advancements in coupled land surface modeling and data assimilation in the NCEP Eta Mesoscale Model. Preprints, 15th Conf. on Hydrology, Long Beach, Ca, Amer. Meteor. Soc., 180-183.
  36. Mitchell, K., and Coauthors, 2000b: The collaborative GCIP Land Data Assimilation (LDAS) Project and supportive NCEP uncoupled land surface modeling initiatives. Preprints, 15th Conf. on Hydrology, Long Beach, Ca, Amer. Meteor. Soc., 1-4.
  37. Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 2417-2424. https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
  38. Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105, 576-594.
  39. Pal, J. S., F. Giorgi, X. B. N. Elguindi, F. Solmon, X. Gao, M. Ashfaq, R. Francisco, J. Bell, N. Diffenbaugh, L. Sloan, A. Steiner, J. Winter and A. Zakey, 2007: The ICTP RegCM3 and RegCNET: Regional climate modeling for the development world. Bull. Amer. Meteor. Soc., 88, 1395-1409. https://doi.org/10.1175/BAMS-88-9-1395
  40. Park, H., and S.-Y. Hong, 2007: An evaluation of a massflux cumulus parameterization scheme in the KMA global forecast system. J. Meteorol. Soc. Japan, 85(2), 151-169. https://doi.org/10.2151/jmsj.85.151
  41. Rajendran, K., R. S. Nanjundiah, and J. Srinivasan, 2002: Comparison of seasonal and intraseasonal variation of tropical climate in NCAR CCM2 GCM with two different cumulus schemes. Meteorol. Atmos. Phys., 79, 57-86. https://doi.org/10.1007/s703-002-8229-0
  42. Wang, Y., L. R. Leung, J. L. McGregor, D.-K. Lee, W.-C. Wang, U. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges, and prospects. J. Meteorol. Soc. Japan, 82(6), 1599-1628. https://doi.org/10.2151/jmsj.82.1599
  43. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17- year monthly analysis based on gauge observations, satellite estimates, and numerical model prediction. Bull. Amer. Meteor. Soc., 78, 2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  44. Zeng, X. , M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628-2644. https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2