DOI QR코드

DOI QR Code

Optimization of Reduction of 3-chloro-4-fluoropropiophenone by Whole Cells of Saccharomyces cerevisiae

Saccharomyces cerevisiae를 이용한 3-chloro-4-fluoropropiophenone 환원 반응 최적화

  • Lee, Hae-Ryong (School of Chemical Engineering, University of Ulsan) ;
  • Jeong, Min (School of Chemical Engineering, University of Ulsan) ;
  • Yoo, Ik-Keun (School of Chemical Engineering, University of Ulsan) ;
  • Hong, Soon-Ho (School of Chemical Engineering, University of Ulsan)
  • 이해룡 (울산대학교 화학공학부) ;
  • 정민 (울산대학교 화학공학부) ;
  • 유익근 (울산대학교 화학공학부) ;
  • 홍순호 (울산대학교 화학공학부)
  • Received : 2011.11.11
  • Accepted : 2011.11.29
  • Published : 2011.12.31

Abstract

Reduction of 3-chloro-4-fluoropropiophenone by Saccharomyces cerevisiae as a whole cell biocatalyst was optimized. Effects of glucose, S. cerevisiae and 3-chloro-4-fluoropropiophenone concentrations on conversion of reduction reaction was investigated. Optimum concentrations of glucose, S. cerevisiae and 3-chloro-4-fluoropropiophenone were 100, 40 and 20 g/L, respectively. At optimum condition, 100% of conversion was achieved in 12 hours of reaction.

Keywords

References

  1. Katzman, M. A. (2009) Current considerations in the treatment of generalized anxiety disorder. Adis International LTD, New Zealand. CNS Drugs 23: 103-120. https://doi.org/10.2165/00023210-200923020-00002
  2. Glieder, A., R. Weis, W.Skranc, P. Poechlauer, I. Dreveny, S. Majer, M. Wubbolts, H. Schwab, and K. Gruber (2003) Comprehensive step-by-step engineering of an (R)-hydroxynitrile lyase for large-scale asymmetric synthesis. Angew. Chem. Int. Ed. 42: 4815-4818. https://doi.org/10.1002/anie.200352141
  3. Sun, Y., X. Wan, J. Wang, Q. Meng, H. Zhang, L. Jiang, and Z. Zhang (2005) Ru-catalyzed asymmetric hydrogenation of ${\alpha}$-Ketoesters with CeCl3․7H2O as additive. Org. Lett. 7: 5425-5427. https://doi.org/10.1021/ol052212c
  4. Uhm, K ., S. Lee, H . Kim, H . Kang, and Y. Lee (2007) Enantioselective resolution of methyl 2-chloromandelate by candida antarctica lipase A in a solvent-free transesterification reaction. J. Mol. Catal. B. Enzym. 45: 34-38. https://doi.org/10.1016/j.molcatb.2006.10.006
  5. van Langen, L. M., R. P. Selassa, F. van Rantwijk, and R. A. Sheldon (2005) Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation. Org. Lett. 7: 327-329. https://doi.org/10.1021/ol047647z
  6. Johanson, T., M. Carlquist, C. Olsson, A. Rudolf, T. Frejd, and M. F. Gorwa-Grauslund (2008) Reaction and strain engineering for improved stereo-selective whole-cell reduction of a bicyclic diketone. Appl. Microbiol. Biotechnol. 77: 1111-1118. https://doi.org/10.1007/s00253-007-1240-1
  7. Katz, M., I. Sarvary, T. Frejd, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund (2002) An improved stereoselective reduction of a bicyclic diketone by Saccharomyces cerevisiae combining process optimization and strain engineering. Appl. Microbiol. Biotechnol. 59: 641-648. https://doi.org/10.1007/s00253-002-1079-4
  8. Li, G., K. Huang, Y. Jiang, and P. Ding (2007) Production of (R)-mandelic acid by immobilized cells of Saccharomyces cerevisiae on chitosan carrier. Process Biochem. 42: 1465-1469. https://doi.org/10.1016/j.procbio.2007.06.015
  9. de Souza Pereira, R. (1998) The use of baker's yeast in the generation of asymmetric centers to produce chiral drugs and other compounds. Crit. Rev. Biotechnol. 18: 25-83. https://doi.org/10.1080/0738-859891224211