DOI QR코드

DOI QR Code

Expression of Δ-desaturase Gene in a Recombinant Pichia pastoris GS115 Strain and Its Activity

재조합 Pichia pastoris GS115에서 Δ-desaturase의 발현과 그 활성

  • Bae, Kyung-Dong (Biological Engineering Dept., College of Engineering, Inha University)
  • 배경동 (인하대학교 생물공학과/베르나바이오텍코리아 백신연구소)
  • Received : 2011.12.08
  • Accepted : 2011.12.20
  • Published : 2011.12.31

Abstract

It has been known that Δ-desaturase (TAD5) in the biosynthetic pathway of long chain polyunsaturated fatty acids of Thraustochytrium aureumis responsible for the conversion of di-homo-${\gamma}$-linolenic acid (C20:4) into arachidonic acid (C20:4). The genetic sequence analysis on TAD5 of Thraustochytrium aureum ATCC34304 used in this study showed that it has two amino acid changes when compared to that of Thraustochytrium aureum TAD5 first reported in 2003. Accordingly, Thraustochytrium aureum ATCC34304 TAD5 was named TAD5_1. TAD5_1-inserted methylotropic Pichia pastoris was prepared and then cultured with a precursor fatty acid, di-homo-${\gamma}$-linolenic acid. GC analysis confirmed that a certain amount of the precursor fatty acid was converted into arachidonic acid. In this study, not only a recombinant Pichia pastoris with the typical activity of ${\Delta}5$-desaturase which plays an essential role in the biosynthesis of LCPUFAs was successfully made but also the preparationpotential of a recombinant Pichia pastoris strain which may synthesize eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that are important in maintaining and improving human's brain function was proposed.

Keywords

References

  1. Horrobin, D. F. (1992) Nutritional and medical importance of gamma-linolenic acid. Prog. Lipid Res. 31: 1-8. https://doi.org/10.1016/0163-7827(92)90014-A
  2. Leonard, A. E., B. Kelder, E. G. Bobik, L. T. Chuang, J. M. P. Barnes, J. M. Thurmond, P. E. Kroeger, J. J. Kopchick, Y. S. Huang, and P. Mukerji (2000) cDNA cloning and characterization of human $\Delta$5-desaturase involved in the biosynthesis of arachidonic acid. Biochem. J. 347: 719-724. https://doi.org/10.1042/0264-6021:3470719
  3. Drexler, H., P. Spiekermann, A. Meyer, F. Domergue, T. Zank, P. Sperling, A. Abbadi, and E. Heinz (2003) Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. J. Plant Physiol. 160: 779-802. https://doi.org/10.1078/0176-1617-01025
  4. Crawford, M. A., K. Costeloe, K. Ghebremeskel, A. Phylactos, L. Skirvin, and F. Stacey (1997) Are deficits of arachidonic and docosahexanoicacids responsible for the neural and vascular complications of preterm babies? Am. J. Clin. Nutri. 66: 1032-1041.
  5. Uauy, R. and A. D. Dangour (2006) Nutrition in brain development and aging: role of essential fatty acids. Nutr. Rev. 24-33.
  6. Kinsella, J. E., B. Lokesh, S. Broughton, and J. Whelan (1990) Dietary polyunsaturated fatty acids and eicosanoids: potential effects on the modulation of inflammatory and immune cells: an overview. Nutrition 6: 24-44.
  7. Gunstone, F. D., J. L. Harwood, and F. B. Padley (1994) The Lipid Handbook. 2nd ed., Chapman & Hall, London, England.
  8. Burja, A. M., H. Radianingtyas, A. Windust, and C. J. Barrow (2006) Isolation and characterization of polyunsaturated fatty acid producing thraustochytrium species: screening of strains and optimization of omega-3 production. Appl. Microbiol. Biotechnol. 72: 1161-1168. https://doi.org/10.1007/s00253-006-0419-1
  9. Qiu, X., H. Hong, and S. L. MacKenzie (2001) Identification of a ${\Delta}$4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in saccharomyces cerevisae and brassica juncea. Biol. Chem. 276: 31561-31566. https://doi.org/10.1074/jbc.M102971200
  10. Sayanova, O., M. A. Smith, P. Lapinskas, A. K. Stobart, and G. Dobson (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta 6-desaturated fatty acids in transgenic tobacco. Proc. Natl. Acad. Sci. USA 94: 4211-4216. https://doi.org/10.1073/pnas.94.8.4211
  11. Huang, Y. S., S. Chaudhary, J. M. Thurmond, E. G. Bobik, L. Yuan, G. M. Chan, S. J. Kirchner, P. Mukerji, and D. S. Knutzon (1999) Cloning of delta12- and delta6-desaturases from mortierella alpina and recombinant production of gamma-linolenic acid in saccharomyces cerevisiae. Lipids 34: 649-659. https://doi.org/10.1007/s11745-999-0410-8
  12. Michaelson, L.V., C. M. Lazarus, G. Griffiths, J. A. Napier, and A. K. Stobart (1998) Isolation of a ${\Delta}$5-fatty acid desaturase gene from mortierella alpina. J. Biol. Chem. 273: 19055-19059. https://doi.org/10.1074/jbc.273.30.19055
  13. Michaelson, L. V., J. A. Napier, M. Lewis, G. Griffiths, C. M. Lazarus, and A. K. Stobart (1998) Functional identification of a fatty acids ${\Delta}$5-desaturase gene from caenorhabditis elegans. FEBS Lett. 439: 215-218. https://doi.org/10.1016/S0014-5793(98)01385-4
  14. Grike, T., H. Schmidt, U. Zahringer, R. Reski, and E. Heinz (1998) Identification of a novel delta 6 acyl-group desaturase by targeted gene disrubtion in physcomitrella patens. Plant J. 15: 39-48. https://doi.org/10.1046/j.1365-313X.1998.00178.x
  15. Domergue, F., J. Lerchl, U. Zahringer, and E. Heinz (2002) Cloning and functional characterization of phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem. 269: 4105-4113. https://doi.org/10.1046/j.1432-1033.2002.03104.x
  16. Chow, T. Y. K. and E. Kafer (1993) A rapid method for isolation of total nucleic acids from aspergillus nidulans. Fungal Genetics Newsletter 40: 25-27.
  17. Mukerji, P., Y. S. Huang, T. Das, J. Thurmond, and S. L. Pereira (2003) Desaturase genes and uses thereof. US Patent 6,635,451.
  18. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  19. Warude, D., K. Joshi, and A. Harsulkar (2006) Polyunsaturated fatty acids: biotechnology. Crit. Rev. Biotechnol. 26: 83-93. https://doi.org/10.1080/07388550600697479
  20. Simpoulos, A. P. (1989) Summary of NATO advanced research workshop on dietary w3 and w6 fatty acids: biological effects and nutritional essentiality. J. Nutr. 199: 521-528.
  21. Takahata, K., K. Monobe, M. Tada, and P. C. Weber (1998) The benefits and risks of n-3 polyunsaturated fatty acids. Biosci. Biotechnol. Biochem. 62: 2079-2085. https://doi.org/10.1271/bbb.62.2079
  22. Barnes, J. M. P., T. Das, E. Bobik, A. E. Leonard, J. M. Thurmond, L. T. Chaung, Y. S. Huang, and P. Mukerji (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc. Natl. Acad. Sci. 97: 8284-8289. https://doi.org/10.1073/pnas.97.15.8284
  23. Kaewsuwan, S., E. B. Cahoon, P. F. Perroud, C. Wiwat, N. Panvisavas, R. S. Quatrano, D. J. Cove, and N. Bunyapraphatsara (2006) Identification and functional characterization of the moss Physcomitrella patens ${\Delta}$5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J. Biol. Chem. 281: 21988-21997. https://doi.org/10.1074/jbc.M603022200