DOI QR코드

DOI QR Code

Protein Analysis of Bacillus subtilis MORI 3K-85 with Reference to the Biosynthesis of 1-Deoxynojirimycin

1-Deoxynojirimycin 생산 균주 Bucillus subtilis MORI 3K-85의 단백질 분석

  • 조용석 (수원대학교 생명과학과) ;
  • 강경돈 ((주)바이오토피아 부설생명과학연구소) ;
  • 박영식 ((주)바이오토피아 부설생명과학연구소) ;
  • 이재연 ((주)바이오토피아 부설생명과학연구소) ;
  • 김현수 (수원대학교 생명과학과) ;
  • 육원정 ((주)바이오토피아 부설생명과학연구소) ;
  • ;
  • 황교열 ((주)바이오토피아 부설생명과학연구소) ;
  • 성수일 (수원대학교 생명과학과)
  • Received : 2011.08.31
  • Accepted : 2011.10.22
  • Published : 2011.12.31

Abstract

In our previous study, we isolated and characterized a 1-deoxynojirimycin (DNJ)-producing bacterium, Bacillus subtilis MORI, from chungkookjang, a Korean traditional food. B. subtilis MORI was subjected to ${\gamma}$-irradiation and the resulting bacteria were screened for increased DNJ production. A mutant was identified that produced 7.6 times more DNJ and named B. subtilis MORI 3K-85. In this study, the protein profiles of both strains were compared by one-dimensional and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) under both native and denaturing conditions. The 1-DE native-PAGE and 1-DE SDS-PAGE analyses identified 5 and 7 bands, respectively, that were found at higher concentrations in B. subtilis MORI 3K-85 than in B. subtilis MORI. Similarly, 2-DE analyses identified 20 protein spots which were found at higher concentrations in B. subtilis MORI 3K-85. The peptide mass profiles of these 20 proteins were analyzed by MALDI-TOF and compared with peptide sequences of B. subtilis and B. amyloliquefaciens in the MASCOT database. This screening suggested that three dehydrogenases, an aldolase, a synthetase, an isomerase, a reductase, and a peroxidase are elevated in B. subtilis MORI 3K-85. Based on this data, one or more of the elevated 8 enzymes might be related to the DNJ biosynthetic pathway.

Keywords

References

  1. Asano, N., R. J. Nash, R. J. Molyneux, and G. W. J. Fleet (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry 53: 1645-1680.
  2. Watson, A. A., G. W. G. Fleet, N. Asano, R. J Molyneux, and R. J. Nash (2001) Polyhydroxylated alkaloids-natural occurrence and therapeutic applications. Phytochemistry 56: 265-295. https://doi.org/10.1016/S0031-9422(00)00451-9
  3. Schedel, M. (2008) Regioselective Oxidation of Aminosorbitol with Gluconobacter oxydans, Key Reaction in the Industrial 1-Deoxynojirimycin Synthesis, pp. 296-307. In: H.-J. Rehm and G. Reed (eds.), Biotechnology: Biotransformations II, Volume 8b, 2nd ed. Wiley-VCH Verlag GmbH, Weinheim, Germany.
  4. Asano, N., K. Oseki, E. Tomioka, H. Kizu, and K. Matsui (1994) N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohyr. Res. 259: 243-255. https://doi.org/10.1016/0008-6215(94)84060-1
  5. Yoshikuni, Y. (1988) Inhibition of intestinal ${\alpha}$-glycosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agric. Biol. Chem. 52: 121-128. https://doi.org/10.1271/bbb1961.52.121
  6. Gruters, R. A., J. J. Neefjes, M. Tersmette, R. E. Y. D. Goede, A. Tulp, H. G. Huisman, F. Miedema, and H. L. Ploegh (1987) Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74-77. https://doi.org/10.1038/330074a0
  7. Fleet, G. W. J., A. Karpas, R. A. Dwek, L. E. Fellows, A. S. Tyms, S. Petursson, S. K. Namgoong, N. G. Ramsden, P. W. Smith, J. C. Son, F. Wilson, D. R. Witty, G. S. Jacob, and T. W. Rademacher (1988) Inhibition of HIV replication by amino-sugar derivatives. FEBS Lett. 237: 128-132. https://doi.org/10.1016/0014-5793(88)80185-6
  8. Karpas, A., G. W. J. Fleet, R. A. Dwek, S. Petursson, S. K. Namgoong, N. G. Ramsden, G. S. Jacob, and T. W. Rademacher (1988) Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc. Natl. Acad. Sic. USA 85: 9229-9233. https://doi.org/10.1073/pnas.85.23.9229
  9. Mehta, A., N. Zitzmann, P. M. Rudd, T. M. Block, and R. A. Dwek (1998) ${\alpha}$-Glucosidase inhibitors as potential broad anti-viral agents. FEBS Lett. 430: 17-22. https://doi.org/10.1016/S0014-5793(98)00525-0
  10. Dwek, R. A., T. D. Butters, F. M. Platt, and N. Zitzmann (2002) Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug. Discov. 1: 65-75. https://doi.org/10.1038/nrd708
  11. Jacob, J. R., K. Mansfield, J. E. You, B. C. Tennant, and Y. H. Kim (2007) Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J. Microbiol. 45: 431-440.
  12. Asano, N., T. Yamashita, K. Yasuda, K. Ikeda, H. Kizu, Y. Kameda, A. Kato, R. J. Nash, H. S. Lee, and K. S. Ryu (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 49: 4208-4213. https://doi.org/10.1021/jf010567e
  13. Afarinkia, K. and A. Bahar (2005) Recent advances in the chemistry of azapyranose sugars. Tetrahedron: Asymmetry 16: 1239-1287. https://doi.org/10.1016/j.tetasy.2005.02.020
  14. Cho, Y. S., Y. S. Park, J. Y. Lee, K.-D. Kang, K. Kim, K. Y. Hwang, and S. I. Seong (2008) Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401-1407. https://doi.org/10.3746/jkfn.2008.37.11.1401
  15. Stein, D. C., L. K. Kopec, R. E. Yasbin, and F. E. Young (1984) Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin. Appl. Environ. Microbiol. 48: 280-284.
  16. Ezure, Y., S. Maruo, K. Miyazaki, and M. Kawamata (1985) Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 49: 1119-1125. https://doi.org/10.1271/bbb1961.49.1119
  17. Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington (1991) The biosynthesis of deoxynojrimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 10: 729-730.
  18. Kim, H. S., J. Y. Lee, K. Y. Hwang, Y. S. Cho, Y. S. Park, K.-D. Kang, and S. I. Seong (2011) Isolation and identification of a Bacillus sp. producing ${\alpha}$-glucosidase inhibitor 1-deoxynojirimycin. Korean J. Microbiol. Biotechnol. 39: 49-55.
  19. Kang, K.-D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, S. K. Rhee, J. H. Chung, O. Kwon, and S. I. Seong (2011) Identification of the gene involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J. Microbiol. 49: 431-440. https://doi.org/10.1007/s12275-011-1238-3
  20. Cho, Y. S. (2011) Studies on 1-deoxynojirimycin biosynthesis genes in Bacillus subtilis MORI. Ph.D. Thesis. University of Suwon, Hwaseong-si, Gyeonggi-do, Korea.
  21. Bollag, D. M., M. D. Rozycki, and S. J. Edelstein (1996) Protein Methods: Gel Electrophoresis Under Denaturing Conditions and Gel Electrophoresis Under Nondenaturing Conditions. 2nd ed., pp. 107-172. Wiley-Liss Inc., NY, USA.
  22. Berkelman, T. and T. Stenstelt (2002) 2-D Electrophoresis Using Immobilized pH Gradie-nts, Principles and Methods. 2nd ed., pp. 17-93. Amersham Biosciences, Uppsala, Sweden.
  23. Hardick, D. J. and D. W. Hutchinson (1993) The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 49: 6707-6716. https://doi.org/10.1016/S0040-4020(01)81840-8
  24. Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington (1992) Glucose is a precursor of 1-deoxynojirimycin and 1-deoxymannonojirimycin in Streptomyces subrutilus. Tetrahedron 48: 6285-6296. https://doi.org/10.1016/S0040-4020(01)88220-X
  25. Shibano, M., Y. Fujimoto, K. Kushino, G. Kusano, and K. Baba (2004) Biosynthesis of 1-deoxynojirimycin in Commelina communis: a difference between the microorganisms and plants. Phytochemstry 65: 2661-2665. https://doi.org/10.1016/j.phytochem.2004.08.013
  26. Clark, L. and N. Horenstein (2010) Biosynthesis of Azasugars. First Southeast Enzyme Conference. April 10. Atlanta, GA, USA.