DOI QR코드

DOI QR Code

Isolation and Characterization of Xylanolytic Bacteria from Horse Manure

말똥으로부터 xylan 분해 균주의 분리 및 특성

  • Kim, Jung-Kon (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Tae-Hyun (Department of Agricultural and Biosystems Engineering, Iowa State University)
  • 김중곤 (농촌진흥청 국립식량과학원 바이오에너지 작물센터) ;
  • 김태현 (아이오와 주립대학교 농업바이오시스템공학과)
  • Received : 2011.07.22
  • Accepted : 2011.09.05
  • Published : 2011.10.31

Abstract

Twenty six microorganisms were isolated from soil and horse manure samples from in Iowa, U.S. Microorganisms were cultivated and screened by using plate count agar (PCA) at $35^{\circ}C$ containing 1% (w/v) oat spelt xylan instead of glucose. The xylanase activities of bacterial strains were analyzed by measuring the concentration of reducing sugar by DNS method. All isolated strains were characterized as the rod form and gram positive strains. Among the isolated strains, the HM6 strains gave the highest xylanase activity. This strain was identified as Bacillus pumilus HM6 by 16S rDNA sequence, morphological and biochemical analysis. Optimal culture temperature and initial medium pH for B. pumilus HM6 were $30-35^{\circ}C$ and pH 6-7, respectively. The maximum xylanase activity of 6879 IU/mL was obtained after growth of HM6 with 1% (w/v) oat spelt xylan at $35^{\circ}C$ for 6 days. Studies on enzymatic properties showed that the optimum conditions for the highest xylanase activity were $60^{\circ}C$ and pH 8.0. In addition, xylanase activity was stable over 2 hours at $50^{\circ}C$, whereas activity decreased after 30 min at $70^{\circ}C$.

Keywords

References

  1. Shallom, D. and Y. Shoham (2003) Microbial hemicellulases. Curr. Opin. Microbiol. 6: 219-228. https://doi.org/10.1016/S1369-5274(03)00056-0
  2. Lee, L. H., D. Y. Kim, M. K. Han, H. W. Oh, S. J. Ham, D. S. Park, K. S. Bae, D. E. Sok, D. H. Shin, K. H. Son, and H. Y. Park (2009) Characterization of an extracellular xylanase from Bacillus sp. HY-20, a bacterium in the gut of Apis mellifera. Kor. J. Microbiol. 45: 332-338.
  3. Chatterjee, A., N. C. Das, S. Raha, R. Babbit, Q. Huang, D. Zaitlin, and I. B. Maiti (2010) Production of xylanase in transgenic tobacco for industrial use in bioenergy and biofuel applications. In Vitro Cell. Dev. Biol.-Plant 46: 198-209. https://doi.org/10.1007/s11627-010-9283-x
  4. Lee, J. H. and S. H. Choi (2006) Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16: 1856-1861.
  5. Kim, M. J., S. J. Lim, and D. K. Kang (2008) Isolation of a Bacillus licheniformis DK42 producing celluloseand xylanase, and properties of the enzymes. J. Anim. Sci. & Technol. (Kor.) 50: 429-436. https://doi.org/10.5187/JAST.2008.50.3.429
  6. Sticklen, M. B. (2008) Plant genetic engineering forbiofuel production: towards affordable cellulosic ethanol. Nat. Rev. 9: 433-443. https://doi.org/10.1038/nrg2336
  7. Hinchee, M., W. Rottmann, L. Mullinax, C. Zhang, S. Chang, M. Cunningham, L. Pearson, and N. Nehra (2009) Short-rotation woody crops for bioenergy and biofuels application. In Vitro Cell. Dev. Biol.-Plant 45: 619-629. https://doi.org/10.1007/s11627-009-9235-5
  8. Du Preez, J. C., B. van Driessel, and B. A. Prior (1989) D-xylose fermentation by Candida shehatae and Pichia stipitisat low dissolved oxygen levels in fed-batch cultures. Biotechnol. Lett. 11: 131-136. https://doi.org/10.1007/BF01192189
  9. Siedenberg, D., S. R. Gerlach, K. Schugerl, M. L. F. Giuseppin, and J. Hunik (1998) Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochem. 33: 429-433. https://doi.org/10.1016/S0032-9592(97)00090-3
  10. Tenkanen, H., J. Plus, and K. Poutanen (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb. Technol. 14: 566-574. https://doi.org/10.1016/0141-0229(92)90128-B
  11. Sunna, A. and G. Antranikian (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67. https://doi.org/10.3109/07388559709146606
  12. Kosugi, A., K. Murashima, and R. H. Doi (2001) Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates. J. Bacteriol. 183: 7037-7043. https://doi.org/10.1128/JB.183.24.7037-7043.2001
  13. Choi, J.-H. and D.-H. Bai (2010) Isolation and identification of alkalophilic microorganism producing xylanase. Food Engineering Progess 14: 263-270.
  14. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Droffner, M. L. and N. Yamamoto (1985) Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilusand transformation of the thermophilic trait to mesophilic strains. J. Gen. Microbiol. 131: 2789-2794.
  16. Hill, J. E., J. C. F. Baiano, and A. C. Barnes (2009) Isolation of a novel strain of Bacillus pumilusfrom penaeid shrimp that is inhibitory against marine pathogens. J. Fish Dis. 32: 1007-1016. https://doi.org/10.1111/j.1365-2761.2009.01084.x
  17. Samain, E., Ph. Debeire, and J. P. Touzel (1997) High level production of a cellulose-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J. Biotechnol. 58: 71-78. https://doi.org/10.1016/S0168-1656(97)00140-5
  18. Hoq, M. M., C. Hempel, and W. D. Deckwer (1994) Cellulasefree xylanase by Thermomyces lanuginosus RT9: Effect of agitation, aeration, and medium components on production. J. Biotenol. 37: 49-58.
  19. Purkarthofer, H., M. Sinner, and W. Steiner (1993) Cellulase-free xylanase from Thermomyces lanuginosus: Optimization of production in submerged and solid-state culture. Enzyme Microb. Technol. 15: 677-682. https://doi.org/10.1016/0141-0229(93)90068-D
  20. Haltrich, D., M. Preiss, and W. Steiner (1993) Optimization of a culture medium for enzyme increased xylanase production by a wild strain of Schizophyllum commune. Enzyme Microb. Technol. 15: 854-860. https://doi.org/10.1016/0141-0229(93)90097-L
  21. Bailey, M. J., J. Buchert, and L. Viikari (1993) Effect of pH on production of xylanase by Trichoderma reesei on xylan- and cellulose-based media. Appl. Microbiol. Biotechnol. 40: 224-229.
  22. Bertrand, J. L., R. Morosoli, F. Shareck, and D. Kluepfel (1989) Expression of the xylanase gene of Streptomyces lividans and production of the enzyme on natural substrates. Biotechnol. Bioeng. 33: 791-794. https://doi.org/10.1002/bit.260330618
  23. Leathers, T. D. (1986) Color variants of Aureobasidium pullulans overproduce xylanase with extremely highspecific activity. Appl. Environ. Microbiol. 52: 1026-1030.
  24. Ratto, M., K. Poutanen, and L. Viikari (1992) Production of xylanolytic enzymes by an alkalitolerant Bacillus circulars strain. Appl. Microbiol. Biotechnol. 37: 470-473.
  25. Bastawde, K. B., U. S. Puntambekar, and D. V. Gokhale (1994) Optimization of cellulosefree xylanase production by a novel yeast strain. J. Ind. Microbiol. 13: 220-224. https://doi.org/10.1007/BF01569752
  26. Yoon, K.-H., S. J. Seol, H.-C. Cho, M.-S. Lee, J. H. Choi, and K. H. Cho (2002) Isolation and enzyme production of a xylanaseproducing strain, Bacillus sp. AMX-4. Kor. J. Microbiol. Biotechnol. 30: 123-128.