DOI QR코드

DOI QR Code

1,2-Propanediol Production by Using Saccharomyces cerevisiae M3G3

Saccharomyces cerevisiae M3G3를 이용한 1,2-Propanediol의 생산 최적화

  • Koo, Ja-Ryong (Department of Biological Engineering, Inha University) ;
  • DaSilva, Nancy A. (Department of Chemical Engineering and Materials Science, University of California) ;
  • Yun, Hyun-Shik (Department of Biological Engineering, Inha University)
  • Received : 2011.08.24
  • Accepted : 2011.10.25
  • Published : 2011.10.31

Abstract

1,2-propanediol (1,2-PD) is a commodity chemical that is currently produced from petrochemical derivatives. Saccharomyces cerevisiae is well characterized and a successful industrial microorganism to enable the improvement of the 1,2-propanediol production by metabolic engineering. A recombinant S. cerevisiae M3G3 was used to produce 1,2-propanediol. S. cerevisiae M3G3 is the diploid strain that contains 3 copies of mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase). S. cerevisiae M3G3 was cultivated at various culture conditions by changing culture temperature, glucose concentration, and inducer concentration. Also the effect of induction time was studied to optimize the production of 1,2-propanediol. Batch and fed-batch cultivation of S. cerevisiae M3G3 was performed by using a 5 L jar fermenter. The highest concentration of 1,2-propanediol in batch cultivation was 0.86 g/L and it was further improved to 1.33 g/L in fed-batch cultivation.

Keywords

References

  1. Saxena, R. K., P. Anand, S. Saran, J. Isar, and L. Agarwal (2010) Microbial production and applications of 1,2-propanediol. Ind. J. Microbiol. 10: 2-11.
  2. Hoffman, M. L. (1999) Metabolic engineering of 1,2-propanediol production in Saccharomyces cerevisiae. Ph. D. Thesis. University of Wisconsin, Madison, WI, USA.
  3. Altaras. N. E. and D. C. Carmeron (2000) Enhanced production of (R)1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. 16: 940-946. https://doi.org/10.1021/bp000076z
  4. Carmeron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw (1998) Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14: 116-125. https://doi.org/10.1021/bp9701325
  5. Behr, A., J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner (2007) Improved utilization of renewable resources: New important derivatives of glycerol. Green Chem. 10: 13-30.
  6. Anonymous. Chemical profile propylene glycol (PG). www. icis.com.
  7. Anonymous. (1998) Propylene glycol: Chemical profile. In Chemical Marketing Reporter 254: 33.
  8. Bennett, G. N. and K. Y. San (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9. https://doi.org/10.1007/s002530000476
  9. Altaras, N. E. and D. C. Carmeron (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.
  10. Lenth, C. W. and R. N. D. Puis (1945) Polyhydric alcohol production by hydrogenolysis of sugars in the presence of copper-aluminum oxide. Ind. Eng. Chem. 37:152-157. https://doi.org/10.1021/ie50422a011
  11. Jung, J. Y., E. S. Choi, and M. K. Oh (2008) Enhanced production 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotech. 18: 1797-1802.
  12. Clomburg, J. M. and R. Gonzalez (2010) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108: 867-879.
  13. Lee, W. and N. A. DaSilva (2006) Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metabol. Eng. 8: 58-65. https://doi.org/10.1016/j.ymben.2005.09.001
  14. Amberg, D. C., D. J. Burke, and J. N. Strathern (2005) pp. 199-209 Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring, NY, USA.
  15. Sherman, F. (2002) Getting started with yeast. pp. 3-41. In: Guthrie, C. and G. R. Fink (eds.). Methods in Enzymology: Guide to Yeast Genetics and Molecular and Cell Biology, Academic Press. San Diego, California.
  16. Carlson, M. (1999) Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202-207. https://doi.org/10.1016/S1369-5274(99)80035-6
  17. Etcheverry, T. (1990) pp. 319-329. In: Goeddel, D. V. (ed.) Induced expression using yeast copper metallothionein promoter. Methods in Enzymology: Gene Expression Technology, Academic Press. San Diego, California.
  18. Koller, A., J. Valesco, and S. Subramani (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast. 16: 651-656. https://doi.org/10.1002/(SICI)1097-0061(200005)16:7<651::AID-YEA580>3.0.CO;2-F
  19. Torija, M. (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int. J. Food Microbiol. 80: 47-53. https://doi.org/10.1016/S0168-1605(02)00144-7
  20. Lee, F. W. F. (1996) Amplification and expression of heterologous genes in Saccharomyces cerevisiae. Ph. D. Thesis. University of California, Irvine, CA, USA.
  21. Avery, S. V., N. G. Howlett, and S. Radice (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62: 3960-3966.