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ABSTRACT. Letc = {cn}nez € A () and { f }nez be a frame (Riesz basis, respectively) of
L?(R). We obtain necessary and sufficient conditions on ¢ under which {c* f» }rcz becomes
a frame (Riesz basis, respectively) of L?(R), where A > 0 and (cxx f)(1) == Y onezCnf(t—
nA). When {c *, fn}nez becomes a frame of L*(R), we present its frame operator and the
canonical dual frame in a simple form. Some interesting examples are included.

1. PRELIMINARIES

A frame is an overcomplete system in a Hilbert space H that provides basis-like represen-
tations of vectors in H. In general, the representations are not unique and this nonuniqueness
(or redundancy) gives rise to robust and stable representations, which explains the usefulness
of frames in applications. For backgrounds on frames, we refer to the books [3, 8, 10] or the
research tutorials [2, 6].

A sequence { f,, }nez in a (separable) Hilbert space H equipped with the inner product ()
is

e a Bessel sequence of H (with a bound B) if there is a constant B > 0 such that

STUL P < BII?, f € H;

nez
e a frame of H (with bounds (A, B)) if there are constants B > A > 0 such that

AIFIZ <Y K P < BIFIP, f € H;

nel
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e a Riesz basis of H (with bounds (A, B)) if it is complete in H and there are constants
B > A > 0 such that

Al < IS eadull® < Bllel2, ¢ = {ea}nez € (@),
nez
where [[c||3 :== 3 |ea]”.
nez
If a frame ceases to be a frame when any one of its members is removed, it is called an exact
frame.
It follows from the definition that Riesz bases are frames. In fact, a frame of H is exact if
and only if it is a Riesz basis of H (see Theorem 6.1.1 in [3]).
For a frame { f), },,cz of H with bounds (4, B), let

S =D A fadfn, FEH

nez

be the frame operator of { f,, } nez. Then S is a self-adjoint automorphism on Hand {S ' (f,,) }nez
is also a frame of H with bounds (%, %) called the canonical dual frame of { f,, }ncz. We then

have the frame expansion property;

F=Y 0 fadSTH ) =D (F. 87T ) for f € H, (1.1)

neZ nez

which converges unconditionally in H. By definition, a frame is preserved under any automor-
phism of H.

Riesz bases of H are characterized as the families {Uey, }rcz where {ey } ez is an orthonor-
mal basis of H and U is an automorphism on H (see Theorem 3.6.6 in [3]).

Fourier transform is defined by

e = 79 = | T fye " dr, £(r) € L'(R) 1 LA(R)

so that \/LQ—W}" [-] extends to be a unitary operator on L?(R).

For any A > 0, define the scaling operator §, : L?(R) — L?(R) by (d\f)(t) := f(t/N).
Then

—
-~

(A1) (&) = AF(19). (1.2)
Forany A > 0, ¢ = {cy}nez € €%(Z) and f € L%(R), let € := {C,}nez, € = {Cntnez
and (c #) f)(t) == > ,cz cnf(t — nX) be the generalized discrete-continuous convolution

product. Then (c *) f) (t) € L} (R) (see Theorem 2 in [11]).

loc
We also let
c(¢) = Z cne” e,

Then (&) € L2[0,2r] is 27-periodic and €(¢) = ¢(¢). Moreover, if ¢ € (1(Z), then €(¢) €
[0, 2mx].
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2. GENERATING NEW FRAMES IN L?(R) BY CONVOLUTIONS

Lemma 2.1. Let f € L*(R) and ¢ € (*(Z) be such that (c *x f)(t) converges in L*(R).
(@) If {f(t—nA)}nez is a Bessel sequence of L*(R), then Gy \(€) :== Y |f(§+ Zn)? e

nez
LU0, 5] N 20, %],
(b) (cf Lemma 2.2 in [7]) If either c € (X(Z) or {f(t — n)\)}nez is a Bessel sequence of
LA(R), then % f(€) = €A &) F(&) in LA(R).
Proof. See Theorem 7.2.3 in [3] for (a). In order to prove (b), let cx = {cnpn}nez, N > 1
be the sequence defined by ¢y, = ¢, if [n| < N and 0 otherwise. Then €y (A Of(&) =
S jen EneAEF(E) = o F(€) in LA(R) as N — oo since (e £) (1) = 3 q enf (t —

nA) converges in L2(R). Therefore it is enough to show that ¢ (A §)f(§) — c(A g)f(g) in
L?(R) as N — oc. To see this, note that

[EAOFE) — NAOFOam = /OO RN — N (A PIF(©)Pdg

o/
_ /O BNE) — EN (ARG A (E)de.

For the last integral, it is easy to see that if ¢ € £1(Z), then
21 /A

2m /X
|7 ROO - FOORCOE < [E0O - OO limiozy [ Craleie

and if {f(t — n)\)}nez is a Bessel sequence of L?(RR), then

2m /X 2m /A
| RO~ R OOPCA O < (Gl [ EAE AP

If c € (}(Z), then€(A\ &) € C[0,27/ )] so that [|[(A€) — EJ\V()\é-)HLOO[O’QTW] — 0as N — oc.
If {f(t — n)\)}nez is a Bessel sequence of L?(R), then 1G sl <o, 22 < 00 by () and
cn(AE) = (AE)in L2[0,27/A] as N — oo. Inboth cases, [[6(A &) f(€)—en (A E) f(& ||L2 —
0as N — 0o so that €y (A &) F(€) = SN ) f(€) in LA(R) as N — oc. D

Now, we prove a statement which is similar to Proposition 6 in [1].

Lemma 2.2. Let ¢ € (Y(Z) and @ 5(f) := c *) f. Then @, is a bounded linear operator
from L?(R) into L?(R) with its adjoint ®* e = Pz and @ is an automorphism of L*(R) if
and only tfmln [c(&)] > 0.



322 KIL HYUN KWON, DAE GWAN LEE, AND GANG JOON YOON

Proof. Let Fn(t) := > c¢uf(t—nA),N > 1. Thenforany N > M > 1,

In|<N
IFx = Fullpeey = 1 Y enft=n))lzg
M<|n|<N
<Y el I =) ey
M<|n|<N
= HfHLZ(R)' Z len] — 0as M — oo
M<|n|<N

since ¢ € ¢*(Z). Thus, { F }%_, is a Cauchy sequence in L?(R) and converges to (cxy f)(t)
in L?(R) so that @ ) is well-defined.

Since [Dor (/) = |5 nes enf (t = 1N i) < llely 1712y where [l =
Y nezlcnls e x is bounded and || @ »|| < ||c||,. Forany a € R, let T;, f(t) := f(t — a). Then
trivially 77, is an automorphism of L?(R) and 7 = T_,. Since @, ) = > nez o,

A= T =Y Ty = P
nez nez

Note that €(£) = €(¢ +21) = 3°,,cz cne " € C[0,27] and ¢ %y [, = (6%6)fin L2(R) by
Lemma 2.1(b).

Assume that @ , is an automorphism of L?*(R) so that there exist constants M > m > 0
such that m[| f|| p2ry < lle #x fll 2wy = M (| f]l 2w forany f € L?(R). Then

2 iy 2 -~ 21 7 2 2 y 2 2
m /Rf<s>| dfg/Rc(A&M F(&)[2de < /Rf<£)| de, f e IA(R)

so that m < [¢(&)| < M on R.
Conversely, assume m := mIRjn [c(€)| > Oandlet M := max [c(€)|. Then

1 e
m | fll 2wy < EH%CJIHLQ(R) = llesx fllpamy) < M fll oy f € L*R)  (2.1)

so that @ is bounded above and below on L?(R). For any g € L%(R), %/g\(f) € L*(R)
since 537y € L(R). Then f := F ~{z559(&)} € L*(R) is such that $c 5(f) = g. Thus,
@, ) becomes an automorphism of L?(R). d

Using the fact that frames and Riesz bases are preserved under automorphisms, we directly
obtain the following as a consequence of Lemma 2.2.

Theorem 2.3. Let ¢ € (1(Z) be such that mﬂén [c(§)| > 0. Then {fn}nez is a frame (Riesz
basis, respectively) of L*>(R) if and only if {c * fn}nez is a frame (Riesz basis, respectively)

of L*(R).
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In fact, the condition mﬁn [c(&)| > 0 for c € £1(Z) is exactly what we need for {c *) f,, }nez

to be a frame of L?(RR) assuming that { f,, },,cz is a frame of L?(R).

Theorem 2.4. Let {f,}ncz be a frame of L*(R) with frame bounds (A, B) and c € (*(Z).
Then {c *\ fn}nez is a frame of L?(R) if and only ifrr%én [c(§)| > 0. Moreover, in this

case, (m*A, M?B) are frame bounds for {c ) fn}nez Where m = mﬂ%n [c(&)| and M =
max [c(&)].
Proof. Note that

Slgem full = 53| @ (61007 —QﬁTZM(d;E)@f@

neZ nez neZ

Z'c*kgfn 796L2<)

neZ

Assume mﬂén [€(¢)| > 0. Then @, is an automorphism of L?(R) by Lemma 2.2 so that

{c*) futnez is also a frame of L?(IR). Moreover, m 19/l L2y < [1€5x gll 2y < M |9l 2(r)
for any g € L?(R) by (2.1) so that (m>A, M?B) are frame bounds for {c % fn }nez.
Conversely, assume that {c ) f, }nez is a frame of L?(R) with bounds (A’, B'). Then

A gll2 gy < > lg.exn )P < B lglZ2gy > 9 € L*(R).

neZ
On the other hand,
Al sy glBagy < S 1E*x g, fu)l? < BE5r gll2amy » 9 € LA(R).
nezZ

Hence, we get A ||c *\ 9”%2([@) < B ||9Hi2(R) and A’ HQH%Q(R < Bl[e 9HL2 for any
g € L*(R). Combining these inequalities, we obtain
- H9HL2 < [l g||L2(R) < a H9HL2(R) , g € L*(R),

which is equivalent to
/| Oldc< [ FOoPEE) |d£<—/9 JPde, g € L(R).

Since %({f) = ¢(¢), the last inequality is again equivalent to 4 < |a(¢ )2 < £ on R, which
completes the proof. O

Example 2.5. Let { f,, },cz be a frame of L?(R) and a,b € C. Then {af,(t) +bfn(t—1)}nez
is a frame of L2(R) if and only if |a| # |b|. To see this, let {c,, },,cz be a sequence of complex
numbers with ¢g = a, ¢c; = b and ¢, = 0, otherwise. It is easy to check that €(£) = a + be %
and so mﬂén |c(¢)| > 0if and only if |a| # |b].
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In general, it’s not easy to check mﬂ%n [c(&)] > 0 for an arbitrary ¢ € ¢!(Z). However, we

have:

Lemma 2.6. Let ¢ € ((Z) be such that 2 max |c,| > > |ca|. Then min [¢(£)| > 0.
neZ nez R

Proof. Since ¢ € ¢*(Z), we have ¢(§) € C[0,2x]. Let |¢j| = mai(|cn|. Then [c(&)] =
ne

| 3 cne™™E > ej] = | X0 cne™™E > el — X |en| > 0 so that min [€(€)| > 0. O
nez n#j n#j R

In other words, if one of the coefficients in {c,, },cz “dominates” the others, then the con-
dition mﬂén [c(&)] > 0 is satisfied, which plays a crucial role in our setting. This sufficient

condition for mﬂén |c(&)| > 0 leads directly to the following corollary.

Corollary 2.7. Let ¢ € (*(Z) be such that 2Ina%< len] > D7 |en|. Then {fn}nez is a frame
ne neZ

(Riesz basis, respectively) of L?(R) if and only if {c %) fn}nez is a frame (Riesz basis, respec-
tively) of L?(R).

The following example provides another point of view on the perturbation of frames (see

[4]).

Example 2.8. Let {f,,} ez be a frame of L?(R) and ¢;, ¢2 € C be complex numbers with
le1] + |e2] < 3. Then forany 6 > 0, {e1fn(t — 0) + (1 — €1 — €2) fn(t) + €2fn(t + 6) ez
is a frame of L?(IR) by Corollary 2.7. This frame can be understood as a perturbation of the
original frame. Moreover,

(i) if { fn}nez is exact, then {e1 f,(t — 0) + (1 — €1 — €2) fn(t) + €2fn(t + 0)}nez is also
exact;

(ii) if f(t) = f(t —n),n € Z, then forany 6 > 0, {e1f(t —n—09) + (1 —e1 — &) f(t —
n) + eaf(t —n + 6)}pez is a frame of L2(R).

LetV : H — L*(R) and W : L?(R) — H be bounded linear operators where H is a
Hilbert space. For ¢ € ¢1(Z), we define c ¥\ V : H — L*(R) and W %) ¢ : L?(R) — H by

ciaVi=Y TV and Wxyei=> caWTyy.

nez neZ
Note that

(A V)(f) = (®ero V)(f), f € H. 2.2)
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On the other hand, for any g € L%(R), let gn(t) := Y. ¢, WT_,)9g(t), N > 1. Then for

[n|<N
any N > M > 1,
lony —gmlly = 1| . eaW(g(-+ 1)l
M<|n|<N
< ) el W9+ M) 2y
M<|n|<N
= [Wllgllp2@ - Y, leal = 0as M — o0
M<|n|<N

since ¢ € ¢1(Z). Hence Y, caWT_y, g converges in H so that W ) c is well-defined.
We can see that ¢ ) V and T x) ¢ are bounded operators with ||c ) V|| < ||c||, ||V|| and

|W sy c|| < |lc|l; [|W]| where || - || is the corresponding operator norm. Moreover,
c*,\V ch MV chV T_.,=V**\c¢
nez neZ
and
(Wane) = (D eaWTna) = LW =cx, W™
nez nez

From these observations, we have the following.

Proposition 2.9. Let V : H — L*R), W : L>(R) — H and T : L*(R) — L?(R) be
bounded linear operators where H is a Hilbert space. If cand d € 2 (Z), then cx)\V, W %) c,
(c*\T) *) d and c ) (I ) d) are bounded operators with the following properties.

1) (cx\V)* =V*x)cand (W %) c)* = cx*), W*
(i) [lcxo VI < llelly 1V [ and [[W sy cfl < [[e]ly [[W].
(iii) (c*x\ ) xpxd=cxy (T *)d).

Moreover, assume rrﬁén [c(&)| > 0. Then

@iv) V (resp. W) is isomorphic if and only if c x) V (resp. W x c) is isomorphic.
(v) T is positive (invertible, self-adjoint, resp.) if and only if c ) I x) € is positive (invert-
ible, self-adjoint, resp.).

Proof. (i) is already proved and (ii) and (iii) are trivial. Note that
Wkye=(Cx\ W")" = (PgroW")* =Wo

by (2.2) so that by Lemma 2.2,
Wxyc=Wodg, (2.3)
where ¢ := {c_j, }nez. By combining (2.2) and (2.3) with Lemma 2.2, (iv) and (v) follow. [J
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Assume that { f,, },,c7 is a frame of L?(R) with bounds (A4, B) and ¢ € ¢*(Z) with mﬂ%n [c(&)] >

0 so that {c *) fn}nez is a frame of L?(R). We denote the synthesis operators of {f,}nez
and {c ) fy}nez by D : £2(Z) — L*(R) and D¢ ) : *(Z) — L*(R), respectively, which are
defined by

D(d):=Y dnfy and Dex(d):=Y dncy fo

neZ neZ

Then S = DD* and S\ = DCA,\D:,/\ are the frame operators of {f,} and {c *\ fy, }nez,
respectively.
We are now ready to find a relation between the frame operators S and S, ». Since { fy, }nez

is a frame of L?(R) with bounds (4, B), sup an”%mg) < B (see Proposition 12.15 in [5]).
nez

Hence for any d € ((Z),

Do ldnllerl 1 Tirfall 2y < VB el Idll, < oo

n€eZ ke

so that

De(d) =Y ducsr fu =Y dn > cxTinfu = > xTia(d_ dufn) = (ca D)(d).

nez neZ  kew kez nez
By the continuity of D, and the fact that ¢1(Z) is dense in ¢£?(Z), we can see that
Dex(d) = (c ) D)(d), d € £*(Z). (2.4)
Consequently, we have the following.

Theorem 2.10. Let {f,}ncz be a frame of L*(R) and ¢ € (*(Z) with n%én [c(§)| > 0. Then
the frame operator S¢ ) of {c % fn}nez is given by

Sc7)\ = C*)\S*)\ (_3,
where S is the frame operator of { fn }nez-

Proof. Since D, ) = c x\ D by (2.4), we have

:,)\ = (Z CnTnAD)* == Z EnD*T:;)\ = Z EnD*T_n)\.

keZ keZ keZ
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Hence
Sc,/\(f) = Dc,)\Dz,)\(f)
= Z Cka)\D Z EnD*T_n)\ (f)

keZ nez

= Z ce i Z CnDD*T_p (f)

k€eZ nez

= Z T Z EnSTfn)\(f)

k€eZ nez

= Z Cka)\(S *\ (_:(f))

keZ
= cxSxe(f), fe L(R),
which completes the proof. O
Corollary 2.11. Let {f,}ncz be a frame of L*(R) and c € (*(Z) with nﬁén [c(&)| > 0. Then
the canonical dual frame of {c ) fn }nez is {@g;(S’lfn)}nez where S is the frame operator
of {fa}nez. |
Proof. In view of (2.2) and (2.3), S\ = @ x 0 S 0 Pz, so that

Sealesn f) =530 S 0@} (Ben(f)) = 25 (S7'S), f € LA(R).
Hence {Sc_,)l\(c A fn)tnez = {(I)z )\< _lfn)}neZ~ g

3. A NOTE ON THE CONVOLUTION ON L?(R)

All the previous results are concerned with the discrete-continuous convolution product of
frames (Riesz bases, respectively) with a sequence in ¢!(Z). However analogous arguments
do not work for the convolution of functions which is given by ( fx g) fR —s)ds.

Proposition 3.1. Let { f, }ncz be aframe of L*(R) and g € L*(R)N L?(R). Then {fn %G }nez
is a Bessel sequence of L*(R) but not a frame of L*(R).

Proof. By Young’s inequality([91), [ fn * gllp2m) < [ fnllL2m) l9llL1 @) so that fu x g €
L2(R),n €z Z.
Since fn x g = fn gin L?(R) (see Theorem 5.8 in [9]) and § = g,
S Whfux )P =D [G*h, f)?. h e L*(R),
neZ neZ

where §(t) := g(—t). Hence
Allg =kl 2@y < Y Ko fux ) < BIg* hll2a) < BlIGlpye) 10l am - b€ LAR),

nez
3.1
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where (A, B) are the frame bounds of { f, },cz, so that {f,, * g}necz is a Bessel sequence of
L?(R) with Bessel bound B [|g]| 11 g)-

To show that {f,, * g}nez is not a frame of L%(R), let hy(t) := ﬁ%’im for £ > 1.

Then hy, € L*(R) with 1Pkl 2y = 1 and 712(5) = \/LEX[—kw,kTr]@)- On the other hand,

~ e | kr o~

15 # il ey = o= g(é)hk(f)‘ oy = 75 G(6)|2d¢ — 0as k — oo. Therefore
S ez | (B fo % g)]* — 0 as k — oo by (3.1), while Ikl L2y = 1,k = 1. This implies that
{fn * g}nez is not a frame of L?(R). O
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