Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes

펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리

  • Bae, Jae-Sang (Department of Environmental Engineering, Korea Maritime University) ;
  • Kim, Jong-Hyang (Institute of Health & Environment at Gyeongnam Provincial Government) ;
  • Choi, Jung-Hye (Department of Environmental Engineering, Korea Maritime University) ;
  • Ekpeghere, Kalu I. (Department of Environmental Engineering, Korea Maritime University) ;
  • Kim, Soo-Gon (QENSolution, Inc.) ;
  • Koh, Sung-Cheol (Department of Environmental Engineering, Korea Maritime University)
  • Received : 2011.11.22
  • Accepted : 2011.12.09
  • Published : 2011.12.31

Abstract

The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

유류의 유출로 인한 총석유계탄화수소(total petroleum hydrocarbons: TPH)는 종종 토양과 지하수의 오염을 초래하고 있다. TPH는 환경에 노출이 될 경우 물리화학적 과정을 거쳐 분해가 되나 그 반응은 상대적으로 느리다. 본 연구에서는 TPH로 오염된 토양의 환경친화적인 처리기법을 궁극적으로 개발하기 위해서 화학적 및 생물학적 통합기술을 도입하고자 시도하였다. 여기서 펜톤유사반응을 전처리단계로 도입하고 이후 디젤분해 혼합균을 처리하여(생물증강법) 오염유류를 처리하고자 하였다. 계면활성제 OP-10S (0.05%)과 산화제($FeSO_4$ 4%, 및 $H_2O_2$ 5%)를 사용할 경우 토양으로부터 효율적으로 TPH를 처리, 제거할 수 있는 것으로 나타났다. 디젤분해 혼합균을 토양슬러리에 접종할 경우 100배 이상 분해균의 밀도상승이 관찰되었는데 이는 접종된 분해균이 오염된 토양에서 성공적으로 존재할 수 있음을 의미한다($10^8-10^9$ CFU/g slurry). Fenton으로 처리된 토양에서의 TPH 제거 효율은 분해균으로 생물증강을 실시할 경우 최소한 57% 정도 상승되는 것으로 나타났다. 그러나 화학적, 생물학적 연속처리를 실시할 경우 대조구(무처리; 재거효율 95%)에 비해 상대적으로 낮은 처리효율(79-83%)을 나타내었는데, 이는 화학처리 중에 발생하는 자유기(free radicals) 함유 산화물질이 분해를 억제한 것에 기인하는 것으로 보인다. 본 연구에서의 얻어진 결과는 환경에 있어서 TPH로 오염된 토양과 저질을 효율적으로 정화하고 토양생태계의 신속한 회복에 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Balba, M.T., N. Al-Awadhi, and R. Al-Daher. 1998. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J. Microbiol. Methods 32, 155-164. https://doi.org/10.1016/S0167-7012(98)00020-7
  2. Collin, P.H. 2001. Dictionary of Ecology and the Environment, 4th. Peter Collin Publishing, London, UK.
  3. Ekpeghere, K.I., H.-J. Bae, S.-H. Kwon, B.-H. Kim, D.-J. Park, and S.-C. Koh. 2009. Clean-up of the crude oil contaminated marine sediments through biocarrier-mediated bioaugmentation. Kor. J. Microbiol. 45, 354-361.
  4. Ekpeghere, K.I., H.-J. Bae, S.-H. Kwon, B.-H. Kim, D.-J. Park, and S.-C. Koh. 2009. Clean-up of the crude oil contaminated marine sediments through biocarrier-mediated bioaugmentation. Kor. J. Microbiol. 45, 354-361.
  5. Fenton, H.J.H. 1984. Oxidation of tartaric acid in presence of iron, J. Chem. Soc. 65, 899-910.
  6. Haag, W.R. and C.D.D. Yao. 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 27, 1005-1013.
  7. Kong, S.-H, R.J. Watts, and J.-H. Choi. 1998. Treatment of Petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37, 1473-1482. https://doi.org/10.1016/S0045-6535(98)00137-4
  8. Launen, L.A., J. Dutta, R. Turpeinen, M.E. Eastep, R. Dorn, V.H. Buggs, J.W. Leonard, and M.M. Häggblom. 2008. Characterization of the indigenous PAH-degrading bacteria of the Spartina alterniflora-dominated salt marshes in the New York / New Jersey harbor. Biodegrad. 19, 347-363. https://doi.org/10.1007/s10532-007-9141-7
  9. Meckstroth, W.K., L.M. Dorfman, and R.E. Heikkila. 1980. Reactivity of the hydroxyl radical with amygdalin in aqueous solutions. Biochem. Pharmacol. 29, 3307-3309. https://doi.org/10.1016/0006-2952(80)90308-1
  10. Riser-Roberts, E. 1998. Remediation of petroleum contaminated soil: biological, physical, and chemical Processes. CRC Press, Boca Raton, Florida, USA.
  11. Rutherford, M.P., D.K. Banerjee, S.M. Luther, M.R. Gray, M.J. Dudas, W.B. McGill, M.A. Pickard, and M.J. Salloum. 1998. Slurry-phase bioremediation of creosote and petroleum contaminated soils. Environ. Technol. 19, 683-696. https://doi.org/10.1080/09593331908616724
  12. Watts, R.J., et al. 1991. Treatment of contaminated soils using catalyzed hydrogen peroxide chemical oxidations; technology for the 90's. In W.W. Eckenfelder et al. (eds.), Techmonic Press, Lancaster, Pennsylvania, USA.
  13. Weber Jr., W.J., and H.S. Kim. 2005. Optimizing contaminant desorption and bioavailability in dense slurry systems 1. Rheology, mechanical mixing, and PAH desorption. Environ. Sci. Technol. 39, 2267-2273. https://doi.org/10.1021/es049565b
  14. Yu, K.S.H., A.H.Y. Wong, K.W.Y. Yau, Y.S. Wong, and N.F.Y. Tam. 2005. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Marine Pollution Bulletin 51, 1071-1077. https://doi.org/10.1016/j.marpolbul.2005.06.006
  15. Zhou, E. and R. Crawford. 1995. Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodegrad. 6, 127-140. https://doi.org/10.1007/BF00695343