Effects of Carbon and Nitrogen Sources on Immunosuppressant Mycophenolic Acid Fermentation by Penicillium brevi-compactum

Penicillium brevi-compactum을 이용한 면역억제제 Mycophenolic Acid 발효에서 탄소원 및 질소원의 영향

  • Rho, Yong-Taek (Department of Biomedical Science, College of Health and Industry, Youngdong University)
  • 노용택 (영동대학교 보건산업대학 의생명과학과)
  • Received : 2011.09.14
  • Accepted : 2011.09.27
  • Published : 2011.09.30

Abstract

Mycophenolic acid blocking the synthesis of xanthosine monophosphate is a nonnucleoside inhibitor of inosine monophosphate dehydrogenase. Therefore mycopholoic acid is a drug currently used as immunosuppressive agent in transplantation of heart, kidney and liver. Mycophenolic acid has been industrially produced through fermentation process by fungus Penicillium brevi-compactum. In this study, the profile of mycophenolic acid fermentation was observed in 5L-jar fermentor to investigate the utilization of carbon and nitrogen sources and the production of mycophenolic acid. It was investigated that what kind of carbon sources was better to cell growth and mycophenolic acid production. Fructose was the best carbon source for mycophenolic acid fermentation, but it is the most expensive one. Thereafter molasses containing sucrose as the supply source of fructose was confirmed to be the best carbon source for the industrial production. Use of molasses increased the fermentation yield of mycophenolic acid more than two times higher than glucose. It was confirmed that urea was the best inorganic nitrogen source, which did not give rise to sudden drop of culture pH. Addition of urea increased the fermentation yield of mycophenolic acid about 3.6 times higher than addition of ammonium nitrate as control. Casein, peptone and casamino acid originated from milk protein increased the fermentation yield of mycophenolic acid about 3.4 times higher than control. Peptone and casamino acid, which are casein hydrolysates, increased cell growth considerably as well.

본 연구에서는 탄소원 및 질소원의 이용 패턴과 mycophenolic acid의 생성 패턴을 확인하기 위하여 먼저 5 L 발효조에서 mycophenolic acid 발효의 경시적 변화를 조사하였다. 그 다음에는 여러 가지 탄소원들이 세포 생장과 mycophenolic acid 생산에 미치는 효과를 조사하였다. 과당이 mycophenolic acid 발효에 가장 좋은 탄소원이었지만, 값이 고가인 단점이 있어서, 과당을 지니고 있는 설탕이 주성분인 당밀을 탄소원으로 사용한 결과 mycophenolic acid의 산업적 생산에 가장 좋은 것으로 확인되었다. 당밀을 첨가한 실험구는 포도당을 탄소원으로 사용한 대조구에 비하여 발효 생산성이 2배 이상 증가하였다. 양호한 세포 생장과 높은 mycophenolic acid 생산을 얻기 위하여 다양한 무기질소원과 유기질소원에 대한 실험을 실시하였다. 무기질소원들 가운데 요소는 암모늄 형태의 질소원을 천천히 공급함으로써 생장과 mycophenolic acid 생산을 저해하는 배양액의 급격한 pH 하락을 일으키지 않았다. 요소를 첨가한 실험구는 질산암모늄을 첨가한 대조구보다 발효 생산성이 3.6배 증가하였다. 카제인, 펩톤, casamino acid 같은 우유 단백질 유래 유기질소원들은 대조구에 비하여 mycophenolic acid 발효 생산성을 최고 3.4배까지 증진시켰다. 카제인의 가수분해물인 펩톤과 casamino acid는 mycophenolic acid 발효 생산성뿐만 아니라 세포 생장도 촉진하였다.

Keywords

References

  1. Allison, A.C. and E.M. Eugui. 1999. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47, 85-118.
  2. Diamond, M.S., M. Zachariah, and E. Harris. 2002. Mycophenolic acid inhibits Dengue virus infection by preventing replication of viral RNA. Virology 304, 211-221. https://doi.org/10.1006/viro.2002.1685
  3. DIFCO manual.1995. Dehydrated culture media and reagents for microbiology 11th ed., Difco Laboratories, Detroit, USA.
  4. Dipchand, A.I., B. Pietra, B.W. McCrindle, H.L. Rosebrook- Bicknell, and M.M. Boucek. 2001. Mycopheolic acid levels in pediatric heart transplant recipients receiving mycophenolate mofetil. J. Heart Lung Transplant. 20, 1035-1043. https://doi.org/10.1016/S1053-2498(01)00305-9
  5. Doerfler, D.L., C.D. Bartman, and I.M. Campbell. 1979. Mycophenolic acid production by Penicillium brevicompactum in two media. Microbiology 25, 940-943.
  6. Fulton, B. and A. Markham. 1996. Mycophenolate mofetil. A review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs 51, 278-298. https://doi.org/10.2165/00003495-199651020-00007
  7. Jonsson, C.A. and H. Carlsten. 2002. Mycophenolic acid inhibits inosine 5′-monophosphate dehydrogenase and suppresses production of pro-inflammatory cytokines, nitric oxide, and LDH in macrophages. Cell. Immunol. 216, 93-101. https://doi.org/10.1016/S0008-8749(02)00502-6
  8. Kida, T., T. Ishikawa, and H. Shibai. 1981. Method for production of mycophenolic acid by fermentation. U.S. Patent. 4,452,891.
  9. Lafont, P., J.P. Debeaupuis, E.M. Gaillaardin, and J. Payen. 1979. Production of mycophenolic acid by Penicillium roqueforti strains. Appl. Environ. Microbiol. 37, 365-368.
  10. Lee, B.K., J.K. Kim, H.I. Kang, and J.W. Lee. 2001. Enhanced production of avermectin B1a with Streptomyces avermitilis by optimization of medium and glucose feeding. Kor. J. Microbiol. 37(2), 158-163.
  11. Mele, T.S. and P.F. Halloran. 1999. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 47, 215-245.
  12. Na-Bangchang K., O. Supasyndh, T. Supaporn, V. Banmairuroi, and J. Karbwang. 1999. Simple and sensitive high-performance liquid chromatographic method for the determination of mycophenolic acid in plasma. J. Chromatogr. B 738, 169-173.
  13. Peter J.H., S. Gregoor, T.V. Gelder, and W. Weimar. 2000. Mycophenolate mofetil, Cellcept, a new immunosuppressive drug with great potential in internal medicine. Nether. J. Med. 57, 233-246. https://doi.org/10.1016/S0300-2977(00)00069-3
  14. Pirsch, J.D. and H.W. Sollinger. 1996. Mycophnolate mofetilclinical and experimental experience. Ther. Drug Monit. 18, 357-361. https://doi.org/10.1097/00007691-199608000-00007
  15. Queener S.W. and C.H. Nash II. 1978. Procedure for obtaining Penicillium species mutants with improved ability to synthesize mycophenolic acid. U.S. Patent 4,115,197.
  16. Ransom, J.T. 1995. Mechanism of action of mycophenolate mofetil. Ther. Drug Monit. 17, 681-684. https://doi.org/10.1097/00007691-199512000-00023
  17. Sadhukhan, A.K., M.V.R. Murthy, R.A. Kumar, E.V.S. Mohan, G. Vandana, C. Bhar, and K.V. Rao. 1999. Optimization of mycophenolic acid production in solid state fermentation using response surface methodology. J. Ind. Microbiol. Biotechnol. 22, 33-38. https://doi.org/10.1038/sj.jim.2900597
  18. Stanbury, P.F., A. Whitaker, and S.J. Hall. 1999. Principles of fermentation technology, 2nd ed., p. 175-177. Butterworth- Heinemann, Oxford, UK.
  19. Yalowitz, J.A., K. Pankiewicz, S.E. Patterson, and H.N. Jayaram. 2002. Cytotoxicity and cellular differentiation activity of methylenebis (phosphonate) analogs of tiazofurin and mycophenolic acid adenine dinucleotide in human cancer cell line. Cancer Lett. 181, 31-38. https://doi.org/10.1016/S0304-3835(02)00045-9