C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 활성이 유도되는 Hammerhead 리보자임에 의한 HCV 복제 억제 연구

Inhibition of Hepatitis C Virus (HCV) Replication by Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase

  • 이창호 (단국대학교 자연과학부 나노센서 바이오텍 연구소 분자생물학과) ;
  • 이성욱 (단국대학교 자연과학부 나노센서 바이오텍 연구소 분자생물학과)
  • Lee, Chang-Ho (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
  • 투고 : 2011.09.05
  • 심사 : 2011.09.20
  • 발행 : 2011.09.30

초록

C형 간염바이러스(hepatitis C virus; HCV) 증식을 효과적이며 특이적으로 제어할 수 있는 유전산물로서, HCV 증식조절인자인 NS5B RNA replicase 존재에 의해 allosteric하게 활성이 유도될 수 있는 HCV internal ribosome entry site (IRES) 표적 hammerhead 리보자임을 개발하였다. 이러한 리보자임은 HCV IRES 염기서열 중 +382 nucleotide 자리를 인지하는 hammerhead 리보자임, NS5B RNA replicase와 특이적으로 결합하는 RNA aptamer 부위, 그리고 aptamer와 NS5B와의 결합에 의해 리보자임 활성을 유도할 수 있도록 구조적 변이를 전달할 수 있는 communication module 부위 등으로 구성되어 있다. 이러한 allosteric 리보자임에 의해 세포 배양에서 HCV의 replicon 복제가 효과적으로 억제됨을 실시간 PCR 분석을 통하여 관찰하였다. 특히, HCV 지놈을 표적하는 리보자임 단독, 또는 HCV NS5B에 대한 RNA aptamer 단독에 의한 HCV 복제 억제능보다 allosteric 리보자임에 의한 HCV 복제 억제능이 더 뛰어났다. 따라서 개발된 allosteric 리보자임은 HCV 증식의 효과적인 증식 억제 선도물질로 활용될 수 있을 것이다.

As a specific and effective therapeutic genetic material against hepatitis C virus (HCV) multiplication, HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was constructed. The allosteric ribozyme was composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nucleotide of HCV IRES. With real-time PCR analysis, the ribozyme was found to efficiently inhibit HCV replicon replication in cells. Of note, the allosteric ribozyme was shown to inhibit HCV replicon replication more efficiently than either HCV genome-targeting ribozyme or NS5B aptamer only. This allosteric ribozyme can be used as a lead genetic agent for the specific and effective suppression of HCV replication.

키워드

참고문헌

  1. Ali, N. and A. Siddiqui. 1995. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. Virol. 69, 6367-6375.
  2. Biroccio, A., J. Hamm, I. Incitti, R. De Francesco, and L. Tomei. 2002. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76, 3688-3696. https://doi.org/10.1128/JVI.76.8.3688-3696.2002
  3. Breaker, R.R. 2002. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31-39. https://doi.org/10.1016/S0958-1669(02)00281-1
  4. Cheng, J.C., M.F. Chang, and S.C. Chang. 1999. Specific interaction between the Hepatitis C virus NS5B RNA polymerase and the 3' end of the viral RNA. J. Virol. 73, 7044-7049.
  5. Choo, Q.L., G. Kuo, A.J. Weiner, L.R. Overby, D.W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362. https://doi.org/10.1126/science.2523562
  6. Hahm, B., D.S. Han, S.H. Back, O.K. Song, M.J. Cho, C.J. Kim, K. Shimotohno, and S.K. Jang. 1995. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J. Virol. 69, 2534-2539.
  7. Hanecak, R., V. Brown-Driver, M.C. Fox, R.F. Azad, S. Furusako, C. Nozaki, C. Ford, H. Sasmor, and K.P. Anderson. 1996. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J. Virol. 70, 5203-5212.
  8. Hartig, J.S., S.H. Najafi-Shoushtari, I. Grune, A. Yan, A.D. Ellington, and M. Famulok. 2002. Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol. 20, 717-722. https://doi.org/10.1038/nbt0702-717
  9. Hino, K., S. Sainokami, K. Shimoda, S. Iino, Y. Wang, H. Okamoto, Y. Miyakawa, and M. Mayumi. 1994. Genotypes and titers of hepatitis C virus for predicting response to interferon in patients with chronic hepatitis C. J. Med. Virol, 42, 299-305. https://doi.org/10.1002/jmv.1890420318
  10. Honda, M., M.R. Beard, L.H. Ping, and S.M. Lemon. 1999. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 73, 1165-1174.
  11. Hwang, B., J.S. Cho, H.J. Yeo, J.H. Kim, K.M. Chung, K. Han, S.K. Jang, and S.W. Lee. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277-1290. https://doi.org/10.1261/rna.7100904
  12. Hwang, B., J.H. Lim, B. Hahm, S.K. Jang, and S.W. Lee. 2009. hnRNP L is required for the translation mediated by HCV IRES. Biochem. Biophys. Res. Commun. 37, 584-588.
  13. Johnson, R.B., X.L. Sun, M.A. Hockman, E.C. Villarreal, M. Wakulchik, and Q.M. Wang. 2000. Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase. Arch. Biochem. Biophys. 377, 129-134. https://doi.org/10.1006/abbi.2000.1749
  14. Khaliq, S., S.A. Khaliq, M. Zahur, B. Ijaz, S. Jahan, M. Ansar, S. Riazuddin, and S. Hassan. 2010. RNAi as a new therapeutic strategy against HCV. Biotechnol. Adv. 28, 27-34. https://doi.org/10.1016/j.biotechadv.2009.08.004
  15. Krieger, N., V. Lohmann, and R. Bartenschlage. 2001. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J. Virol. 75, 4614-4624. https://doi.org/10.1128/JVI.75.10.4614-4624.2001
  16. Lauer, G.M. and B.D. Walker. 2001. Hepatitis C virus infection. New Engl. J. Med. 345, 41-52. https://doi.org/10.1056/NEJM200107053450107
  17. Lee, C.H. and S.W. Lee. 2007. Development of hepatitis C virus (HCV) genome-targeting hammerhead ribozyme which activity can be allosterically regulated by HCV NS5B RNA replicase. Kor. J. Microbiol. 43, 159-165.
  18. Macejak, D.G., K.L. Jensen, S.F. Jamison, K. Domenico, E.C. Roberts, N. Chaudhary, I. von Carlowitz, L. Bellon, M.J. Tong, A. Conrad, and et al. 2000. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776. https://doi.org/10.1002/hep.510310331
  19. Moradpour, D., V. Brass, R. Gosert, B. Wolk, and H. Blum. 2002. Hepatitis C: molecular virology and antiviral targets. Trends Mol. Med. 8, 476-482. https://doi.org/10.1016/S1471-4914(02)02395-X
  20. Pagliaro, L., A. Craxi, C. Cammaa, F. Tine, V. Di Marco, L. Iacono, and P. Almasio. 1994. Interferon-alpha for chronic hepatitis C: an analysis of pretreatment clinical predictors of response. Hepatology 19, 820-828.
  21. Paul, C.P., P.D. Good, A. Kleihauer, J.J. Rossi, and D.R. Engelke. 2003. Localized expression of small RNA inhibitors in human cells. Mol. Ther. 7, 237-247. https://doi.org/10.1016/S1525-0016(02)00038-2
  22. Penin, F., J. Dubuisson, F.A. Rey, D. Moradpour, and J.M. Pawlotsky. 2004. Structural biology of hepatitis C virus. Hepatology 39, 5-19. https://doi.org/10.1002/hep.20032
  23. Ryu, K.J., J.H. Kim, and S.W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386-395. https://doi.org/10.1016/S1525-0016(02)00063-1
  24. Sakamoto, N., C.H. Wu, and G.Y. Wu. 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J. Clin. Invest. 98, 2720-2728. https://doi.org/10.1172/JCI119097
  25. Schlutter, J. 2011. Therapeutics: new drugs hit the target. Nature 474, S5-S7. https://doi.org/10.1038/474S5a
  26. Shin, K.S., J.H. Lim, J.H. Kim, H. Myung, and S.W. Lee. 2006. Inhibition of the replication of hepatitis C virus replicon with nuclease-resistant RNA aptamers. J. Microbiol. Biotechnol. 16, 1634-1639.
  27. Vaish, N.K., F. Dong, L. Andrews, R.E. Schweppe, N.G. Ahn, L. Blatt, and S.D. Seiwert. 2002. Monitoring post-translational modification of proteins with allosteric ribozymes. Nat. Biotechnol. 20, 810-815. https://doi.org/10.1038/nbt719