Filtration과 Integrated Cell Culture/Real-Time Reverse Transcription PCR 기법을 이용한 채소류에서 Human Rotavirus 신속 검출

Rapid Detection Method for Human Rotavirus from Vegetables by a Combination of Filtration and Integrated Cell Culture/Real-Time Reverse Transcription PCR

  • 현지연 (건국대학교 수의과대학 공중보건학) ;
  • 천정환 (건국대학교 수의과대학 공중보건학) ;
  • 송광영 (건국대학교 수의과대학 공중보건학) ;
  • 황인균 (식품의약품안전청 식품의약품안전평가원 미생물과) ;
  • 곽효선 (식품의약품안전청 식품의약품안전평가원 미생물과) ;
  • 이정수 (식품의약품안전청 식품의약품안전평가원 미생물과) ;
  • 김무상 (서울시 보건환경연구원) ;
  • 이중복 (건국대학교 수의과대학 전염병학) ;
  • 서건호 (건국대학교 수의과대학 공중보건학)
  • Hyeon, Ji-Yeon (Department of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Chon, Jung-Whan (Department of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Song, Kwang-Young (Department of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Hwang, In-Gyun (Korea Food and Drug Administration, Osong Health Technology Administration Complex) ;
  • Kwak, Hyo-Sun (Korea Food and Drug Administration, Osong Health Technology Administration Complex) ;
  • Lee, Jung-Soo (Korea Food and Drug Administration, Osong Health Technology Administration Complex) ;
  • Kim, Moo-Sang (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Lee, Jung-Bok (Department of Infectious Disease, College of Veterinary Medicine, Konkuk University) ;
  • Seo, Kun-Ho (Department of Public Health, College of Veterinary Medicine, Konkuk University)
  • 투고 : 2011.03.14
  • 심사 : 2011.06.15
  • 발행 : 2011.06.30

초록

본 연구는 human rotavirus (HRV)의 검출법을 최적화하기 위해 real-time RT-PCR과 세포 배양법을 이용하여 여러 가지 탈리 농축법을 비교 및 평가하는 것을 목적으로 하였다. 채소류 중 배추, 상추, 깻잎을 선정하여 바이러스 희석액을 접종하고 탈리액 비교를 위하여 buffer A (100 mM Tris-HCl, 50 mM glycine, 3% beef extract, pH 9.5)와 buffer B (250 mM Threonine, 300 mM NaCl, pH 9.5)를 이용하여 탈리하였고, 농축방법을 비교하기 위하여 PEG (polyethylene glycol) 침전법 또는 filtration [Nanoceram filter$^{(R)}$ (Argonide corporation)]을 이용하여 농축하였다. 또한 바이러스의 감염성 평가를 위하여 MA-104 cell을 배양하여 탈리, 농축 방법을 거쳐 회수된 HRV를 접종하고 1, 48, 72, 96, 120, 144, 168시간 후 세포를 수거하여 real-time RT-PCR을 시행하고 세포병변을 관찰하였다. 탈리 용액은 buffer A가 회수율 29.54%로 buffer B의 18.32%보다 더 뛰어난 탈리효과를 보였으며 농축방법을 비교했을 때 filtration 방법이 회수율 51.89%를 나타내며 PEG 침전법에 비해서 바이러스의 농축에 효과적이었으며 검출 소요시간이나 간단한 과정 면에서 효율적이었다. ICC/real-time RT-PCR을 시행하였을 때 세포병변 72시간 후부터 나타나기 시작했지만 Ct value는 48시간부터 감소하기 시작하여 더 빠른 시간 내에 감염성을 평가할 수 있었다. 따라서, filtration과 integrated/cell culture real-time RT-PCR을 이용하면 기존의 검출방법보다 빠른 시간 내에 바이러스 검출이 가능할 것으로 여겨진다.

The purpose of this study was to evaluate and compare different elution and concentration methods for optimization of human rotavirus (HRV) detection method using real-time RT-PCR and cell culture techniques. The leafy vegetable samples (lettuce, Chinese cabbage) were artificially inoculated with HRV. Viruses were extracted from the vegetables by two different elution buffers, buffer A (100 mM Tris-HCl, 50 mM glycine, 3% beef extract, pH 9.5) and buffer B (250 mM Threonine, 300 mM NaCl, pH 9.5), and the extracted viruses were concentrated by filtration and PEG precipitation sequentially. To determine infectivity of the viruses, the viruses recovered from the samples were infected to the MA-104 cells, and integrated cell culture real-time RT-PCR was performed at 1, 48, 72, 96, 120, 144, 168 h post-infection (p.i.). The elution buffer A was more efficient in extracting the virus from the produce samples tested than the buffer B, 29.54% and 18.32% of recoveries, respectively. The sensitivity of real-time RT-PCR method was markedly improved when the virus was concentrated by the filtration method. When the viruses were eluted and concentrated by buffer A and filtration, respectively, the average recovery rate was approximately 51.89%. When the viruses recovered from samples were infected to MA-104 cell, infectious HRV was detected within 48 h p.i. by ICC/real-time RT-PCR, whereas cytopathic effects were not observed until 72 h p.i. The optimized detection method evaluated in this study could be useful for rapid and reliable detection of HRV in fresh produce products and applied for detection of other food-borne viruses.

키워드

참고문헌

  1. Bhattacharya, S.S., M. Kulka, K.A. Lampel, T.A. Cebula, and B.B. Goswami. 2004. Use of reverse transcription and PCR to discriminate between infectious and non-infectious hepatitis A virus. J. Virol. Methods 116, 181-187. https://doi.org/10.1016/j.jviromet.2003.11.008
  2. Bidawid, S., J.M. Farber, and S.A. Sattar. 2000. Rapid concentration and detection of hepatitis A virus from lettuce and strawberries. J. Virol. Methods 88, 175-185. https://doi.org/10.1016/S0166-0934(00)00186-5
  3. Brassard, J., K. Seyer, A. Houde, C. Simard, and Y.L. Trottier. 2005. Concentration and detection of hepatitis A virus and rotavirus in spring water samples by reverse transcription-PCR. J. Virol. Methods 123, 163-169. https://doi.org/10.1016/j.jviromet.2004.09.018
  4. Butot, S., T. Putallaz, and G. Sanchez. 2007. Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Appl. Environ. Microbiol. 73, 186-192. https://doi.org/10.1128/AEM.01248-06
  5. Casas, N., F. Amarita, and I.M. de Maranon. 2007. Evaluation of an extracting method for the detection of Hepatitis A virus in shellfish by SYBR-Green real-time RT-PCR. Int. J. Food Microbiol. 120, 179-185. https://doi.org/10.1016/j.ijfoodmicro.2007.01.017
  6. Dentinger, C.M., W.A. Bower, O.V. Nainan, S.M. Cotter, G. Myers, L.M. Dubusky, S. Fowler, E.D. Salehi, and B.P. Bell. 2001. An outbreak of hepatitis A associated with green onions. J. Infect. Dis. 183, 1273-12176. https://doi.org/10.1086/319688
  7. Dubois, E., C. Agier, O. Traore, C. Hennechart, G. Merle, C. Cruciere, and H. Laveran. 2002. Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture. J. Food Prot. 65, 1962-1969. https://doi.org/10.4315/0362-028X-65.12.1962
  8. Dubois, E., C. Hennechart, G. Merle, C. Burger, N. Hmila, S. Ruelle, S. Perelle, and V. Ferre. 2007. Detection and quantification by real-time RT-PCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: characterization of the method performances. Int. J. Food Microbiol. 117, 141-149. https://doi.org/10.1016/j.ijfoodmicro.2007.02.026
  9. Hernandez, F., R. Monge, C. Jimenez, and L. Taylor. 1997. Rotavirus and hepatitis A virus in market lettuce (Latuca sativa) in Costa Rica. Int. J. Food Microbiol. 37, 221-223. https://doi.org/10.1016/S0168-1605(97)00058-5
  10. Houde, A., E. Guevremont, E. Poitras, D. Leblanc, P. Ward, C. Simard, and Y.L. Trottier. 2007. Comparative evaluation of new TaqMan real-time assays for the detection of hepatitis A virus. J. Virol. Methods 140, 80-89. https://doi.org/10.1016/j.jviromet.2006.11.003
  11. Jiang, Y.J., G.Y. Liao, W. Zhao, M.B. Sun, Y. Qian, C.X. Bian, and S.D. Jiang. 2004. Detection of infectious hepatitis A virus by integrated cell culture/strand-specific reverse transcriptasepolymerase chain reaction. J. Appl. Microbiol. 97, 1105-1112. https://doi.org/10.1111/j.1365-2672.2004.02413.x
  12. Jothikumar, N., D.O. Cliver, and T.W. Mariam. 1998. Immunomagnetic capture PCR for rapid concentration and detection of hepatitis A virus from environmental samples. Appl. Environ. Microbiol. 64, 504-508.
  13. Koopmans, M. and E. Duizer. 2004. Foodborne viruses: an emerging problem. Int. J. Food Microbiol. 90, 23-41. https://doi.org/10.1016/S0168-1605(03)00169-7
  14. Le Guyader, F.S., A.C. Schultz, L. Haugarreau, L. Croci, L. Maunula, E. Duizer, F. Lodder-Verschoor, C.H. von Bonsdorff, E. Suffredini, W.M. van der Poel, and et al. 2004. Round-robin comparison of methods for the detection of human enteric viruses in lettuce. J. Food Prot. 67, 2315-2319. https://doi.org/10.4315/0362-028X-67.10.2315
  15. Leggitt, P.R. and L.A. Jaykus. 2000. Detection methods for human enteric viruses in representative foods. J. Food Prot. 63, 1738-1744. https://doi.org/10.4315/0362-028X-63.12.1738
  16. Logan, C., J.J. O'Leary, and N. O'Sullivan. 2006. Real-time reverse transcription-PCR for detection of rotavirus and adenovirus as causative agents of acute viral gastroenteritis in children. J. Clin. Microbiol. 44, 3189-3195. https://doi.org/10.1128/JCM.00915-06
  17. Mullendore, J.L., M.D. Sobsey, and Y.C. Shieh. 2001. Improved method for the recovery of hepatitis A virus from oysters. J. Virol. Methods 94, 25-35. https://doi.org/10.1016/S0166-0934(01)00263-4
  18. Queiroz, A.P., F.M. Santos, A. Sassaroli, C.M. Harsi, T.A. Monezi, and D.U. Mehnert. 2001. Electropositive filter membrane as an alternative for the elimination of PCR inhibitors from sewage and water samples. Appl. Environ. Microbiol. 67, 4614- 4618. https://doi.org/10.1128/AEM.67.10.4614-4618.2001
  19. Reynolds, K.A., C.P. Gerba, and I.L. Pepper. 1996. Detection of infectious enteroviruses by an integrated cell culture-PCR procedure. Appl. Environ. Microbiol. 62, 1424-1427.
  20. Rosenblum, L.S., I.R. Mirkin, D.T. Allen, S. Safford, and S.C. Hadler. 1990. A multifocal outbreak of hepatitis A traced to commercially distributed lettuce. Am. J. Public Health 80, 1075-1079. https://doi.org/10.2105/AJPH.80.9.1075
  21. Schwarz, B.A., R. Bange, T.W. Vahlenkamp, R. Johne, and H. Muller. 2002. Detection and quantitation of group A rotaviruses by competitive and real-time reverse transcription-polymerase chain reaction. J. Virol. Methods 105, 277-285. https://doi.org/10.1016/S0166-0934(02)00118-0
  22. Shan, X.C., P. Wolffs, and M.W. Griffiths. 2005. Rapid and quantitative detection of hepatitis A virus from green onion and strawberry rinses by use of real-time reverse transcription-PCR. Appl. Environ. Microbiol. 71, 5624-5626. https://doi.org/10.1128/AEM.71.9.5624-5626.2005