Paenibacillus donghaensis JH8에서 세포외 Xylanase의 특성

Characterization of Extracellular Xylanase from Paenibacillus donghaensis JH8

  • 임채성 (충북대학교 자연과학대학 미생물학과) ;
  • 오용식 (충북대학교 자연과학대학 미생물학과) ;
  • 노동현 (충북대학교 자연과학대학 미생물학과)
  • Lim, Chae-Sung (Department of Microbiology, Chungbuk National University) ;
  • Oh, Yong-Sik (Department of Microbiology, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • 투고 : 2011.03.08
  • 심사 : 2011.03.23
  • 발행 : 2011.03.31

초록

Xylanase는 선형복합다당인 ${\beta}$-1,4-xylan을 xylose로 가수분해하는 효소의 한 종류이며, 종이제조공정에 응용되고 미래에 바이오 연료의 생산에 사용 될 수 있다. 동해 심층 퇴적물로부터 신종세균으로 보고된 Paenibacillus donghaensis JH8은 배지중의 xylan을 분해한다고 알려져 있으며, 여기에서는 이 효소의 특성을 조사하였다. 효소는 0.1% xylan 존재에서 최고로 유도되었으며, xylanase의 생산은 초기 대수성장기에 효소를 생산하기 시작하여, 정지기에서 약 55 miliunit에 도달하였다. 세포외성 xylanase의 최적온도와 pH는 각각 $40^{\circ}C$와 pH 6.0이였다. Xylanase의 활성은 $Ca^{2+}$$Mn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, $Al^{3+}$, EDTA의 존재에 의해 억제되었고, $K^+$, $Ag^+$, DTT에 의해 활성화되었다. 이 xylanase는 $40^{\circ}C$에서 120분간 활성을 유지하며 안정하였지만, $60^{\circ}C$에서는 30분에서 거의 모든 활성을 잃어버리는 특성을 보여주었다. 농축된 배양 상등액의 zymography 분석시 42 kDa의 주 밴드와 68과 120 kDa에 두 개의 아주 희미한 밴드를 나타내었다.

Xylanase is a class of enzymes that hydrolyze the linear polysaccharide ${\beta}$-1,4-xylan into xylose. This enzyme is applied in the process of paper making and may be used for the process of biofuel production in the future. The Paenibacillus donghaensis JH8, isolated from Donghae deepsea sediment and reported as a novel bacterium, was known to degrade xylan and its xylanase was characterized in this study. The enzyme was maximally induced in the presence of 0.1% xylan. The production of xylanase was started at early logarithmic phase and reached about 55 miliunit at stationary phase of growth. The optimal temperature and pH of extracellular xylanase were found to be $40^{\circ}C$ and pH 6.0, respectively. The activity of xylanase was inhibited by the presence of $Ca^{2+}$, $Mn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, $Al^{3+}$ or EDTA, and activated by $K^+$, $Ag^+$ or DTT. This xylanase was stable at $40^{\circ}C$ for 120 min, but lost almost their activity in 30 min at $60^{\circ}C$. Zymography analysis of concentrated culture supernatant revealed one major band at 42 kDa and two faint bands at 68 and 120 kDa.

키워드

참고문헌

  1. Bailey, M.J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  2. Beguin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131, 333-336. https://doi.org/10.1016/0003-2697(83)90178-1
  3. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3, 286-290. https://doi.org/10.1016/0167-7799(85)90004-6
  4. Cavicchioli, R., K.S. Siddique, D. Andrews, and K.R. Sowers. 2002. Low-temperature extremophiles and their application. Curr. Opin. Biotechnol. 13, 253-261. https://doi.org/10.1016/S0958-1669(02)00317-8
  5. Choi, J.H., W.T. Im, J.S. Yoo, S.M. Lee, D.S. Moon, H.J. Kim, S.K. Rhee, and D.H. Roh. 2008. Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. J. Microbiol. Biotechnol. 18, 189-193.
  6. Johnvesly, B., S. Virupakshi, G.N. Patil, Ramalingam, and G.R. Naik. 2002. Cellulase-free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB-99. J. Microbiol. Biotechnol. 12, 153-156.
  7. Jose, H.B., F. Fava-De-Moraes, and G.M. Zanin. 1999. Bleaching of kraft pulp with commercial xylanase. Appl. Biochem. Biotechnol. 77, 713-722.
  8. Kansoh, A.L. and Z.A. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek 85, 103-114. https://doi.org/10.1023/B:ANTO.0000020281.73208.62
  9. Kim, D.J., H.J. Shin, and K.H. Yoon. 1995. Isolation of a thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. Kor. J. Appl. Microbiol. Biotechnol. 28, 304-310.
  10. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411-456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  11. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  12. Lee, Y.E. 2004. Isolation and characterization of thermostable xylanase-producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32, 22-28.
  13. McCracken, K.J., M.R. Bedford, and R.A. Stewart. 2001. Effects of variety, the 1B/1R translocation and xylanase supplementation on nutritive value of wheat for broilers. Br. Poult. Sci. 42, 638-642. https://doi.org/10.1080/00071660120088452
  14. Na, K.H., J.M. Kim, H.K. Park, D.H. Bai, and J.H. Yu. 1990. Recombinant plasmid DNA containing xylanase and $\beta$-xylosidase gene of Bacillus sp. YA-14. Kor. J. Microbiol. Biotechnol. 18, 195-198.
  15. Park, Y.S. and T.Y. Kim. 2003. Isolation of Bacillus alkalophilus AX2000 producing alkaline xylanase and enzyme production. Kor. J. Microbiol. Biotechnol. 31, 157-164.
  16. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit. Rev. Biotechnol. 22, 33-64. https://doi.org/10.1080/07388550290789450
  17. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67. https://doi.org/10.3109/07388559709146606
  18. Wong, K.K.Y. and J.N. Saddler. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12, 413-435. https://doi.org/10.3109/07388559209114234
  19. Yoon, K.H., S.J. Seol, H.C. Cho, M.S. Lee, J.H. Choi, and K.H. Cho. 2002. Isolation and enzyme production of a xylanase-producing strain, Bacillus sp. AMX-4. Kor. J. Microbiol. Biotechonol. 30, 123-128.