DOI QR코드

DOI QR Code

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Jang, Yeong-Seon (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Young-Min (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jae-Jung (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Han-Byul (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Gyu-Hyeok (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jae-Jin (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2011.07.12
  • Accepted : 2011.08.22
  • Published : 2011.12.28

Abstract

Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.

Keywords

References

  1. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  2. Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey. 2010. Bioethanol production from rice straw: An overview. Bioresour. Technol. 101: 4767-4774. https://doi.org/10.1016/j.biortech.2009.10.079
  3. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chaverri, P., L. A. Castlebury, G. J. Samuels, and D. M. Geiser. 2003. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phylogenet. Evol. 27: 302-313. https://doi.org/10.1016/S1055-7903(02)00400-1
  5. Galbe, M., P. Sassner, A. Wingren, and G. Zacchi. 2007. Process engineering economics of bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 303-327.
  6. Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  7. Gilbert, H. J., H. Stålbrand, and H. Brumer. 2008. How the walls come crumbling down: Recent structural biochemistry of plant polysaccharide degradation. Curr. Opin. Plant Biol. 11: 338-348. https://doi.org/10.1016/j.pbi.2008.03.004
  8. Girio, F. M., C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Lukasik. 2010. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 101: 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
  9. Harvey, P. R., P. Langridge, and D. R. Marshall. 2001. Genetic drift and host-mediated selection cause genetic differentiation among Gaeumannomyces graminis populations infecting cereals in Southern Australia. Mycol. Res. 105: 927-935.
  10. Holker, U., M. Hofer, and J. Lenz. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186. https://doi.org/10.1007/s00253-003-1504-3
  11. Hrmova, M., P. Biely, and M. Vrsanska. 1986. Specificity of cellulase and $\beta$-xylanase induction in Trichoderma reesei QM 9414. Arch. Microbiol. 144: 307-311. https://doi.org/10.1007/BF00410968
  12. Juhasz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519-3525. https://doi.org/10.1016/j.procbio.2005.03.057
  13. Kamal, M. M. and M. A. T. Mia. 2009. Diversity and pathogenicity of the rice brown spot pathogen, Bipolaris oryzae (Breda de Haan) Shoem. in Bangladesh assessed by genetic fingerprint analysis. Bangladesh. J. Bot. 38: 119-125.
  14. Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim. 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91: 153-156. https://doi.org/10.1016/S0960-8524(03)00172-X
  15. Keinath, A. P. 1994. Pathogenicity and host range of Fusarium oxysporum from sweet basil and evaluation of disease control methods. Plant Dis. 78: 1211-1215. https://doi.org/10.1094/PD-78-1211
  16. Kikot, G. E., R. A. Hours, and T. M. Alconada. 2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. J. Basic Microbiol. 49: 231-241. https://doi.org/10.1002/jobm.200800231
  17. Kim, M.-J., H. Lee, Y. S. Choi, G.-H. Kim, N. Y. Huh, S. Lee, et al. 2010. Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Antonie Van Leeuwenhoek 97: 377-387. https://doi.org/10.1007/s10482-010-9416-6
  18. Kuhad, R. C. and A. Singh. 1993. Lignocellulose biotechnology - current and future prospects. Crit. Rev. Biotechnol. 13: 151- 172. https://doi.org/10.3109/07388559309040630
  19. Larkin, M., G. Blackshields, N. Brown, R. Chenna, P. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  20. Maddison, D. and W. Maddison. 2005. MacClade 4: Analysis of phylogeny and character evolution. Version 4.08. Sinauer Associates, Sunderland, MA.
  21. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Oda, K., D. Kakizono, O. Yamada, H. Iefuji, O. Akita, and K. Iwashita. 2006. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl. Environ. Microbiol. 72: 3448-3457. https://doi.org/10.1128/AEM.72.5.3448-3457.2006
  23. Roberto, I. C., S. I. Mussatto, and R. C. L. B. Rodrigues. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crops Prod. 17: 171- 176. https://doi.org/10.1016/S0926-6690(02)00095-X
  24. Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. 30: 279-291. https://doi.org/10.1007/s10295-003-0049-x
  25. Sandhu, D. K. and M. K. Kalra. 1982. Production of cellulase, xylanase and pectinase by Trichoderma longibrachitum on different substrates. Trans. Br. Mycol. Soc. 19: 409-413.
  26. Sempere, F. and M. P. Santamarina. 2010. Study of the interactions between Penicillium oxalicum Currie & Thom and Alternaria alternata (Fr.) Keissler. Braz. J. Microbiol. 41: 700- 706. https://doi.org/10.1590/S1517-83822010005000003
  27. Sert, H. B. and H. Sumbul. 2005. First report of leaf spot caused by Phoma sorghina on Trifolium campestre in turkey. Plant Pathol. 54: 249. https://doi.org/10.1111/j.1365-3059.2004.01149.x
  28. Singhania, R. R., R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549. https://doi.org/10.1016/j.enzmictec.2010.03.010
  29. Stenglein, S. A., M. I. Dinolfo, M. V. Moreno, R. Galizio, and G. Salerno. 2010. Fusarium proliferatum, a new pathogen causing head blight on oat in Argentina. Plant Dis. 94: 783- 783.
  30. Suto, M. and F. Tomita. 2001. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng. 92: 305-311.
  31. Swofford, D. 2002. Paup*: Phylogenetic analysis using parsimony (* and other methods), version 4.0 b10. Sinauer Associates, Sunderland, MA.
  32. Umemoto, S., Y. Odake, T. Takeuchi, S. Yoshida, S. Tsushima, and M. Koitabashi. 2009. Blue mold of tomato caused by Penicillium oxalicum in Japan. J. Gen. Plant Pathol. 75: 399- 400. https://doi.org/10.1007/s10327-009-0180-2
  33. Valaskova, V. and P. Baldrian. 2006. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus: Production of extracellular enzymes and characterization of the major cellulases. Microbiology 152: 3613-3622. https://doi.org/10.1099/mic.0.29149-0
  34. Yoon, J. J., K. Y. Kim, and C. J. Cha. 2008. Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. Microbiol. 46: 51-55. https://doi.org/10.1007/s12275-007-0230-4

Cited by

  1. Fungal Diversity of Rice Straw for Meju Fermentation vol.23, pp.12, 2011, https://doi.org/10.4014/jmb.1307.07071
  2. Evaluation of Synthetic and Semi- synthetic Culture Media for Endo-1,4-β- Glucanases Secretion by Trichoderma koningiopsis vol.8, pp.None, 2015, https://doi.org/10.1016/j.mspro.2015.04.136
  3. Enzymatic Saccharification of Lignocellulosic Residues by Cellulases Obtained from Solid State Fermentation Using Trichoderma viride vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/342716
  4. Chemical chronobiology: Toward drugs manipulating time vol.589, pp.14, 2015, https://doi.org/10.1016/j.febslet.2015.04.059
  5. Crop residue degradation by fungi isolated from conservation agriculture fields under rice-wheat system of North-West India vol.5, pp.4, 2011, https://doi.org/10.1007/s40093-016-0145-3
  6. Diversity of Wood-Inhabiting Polyporoid and Corticioid Fungi in Odaesan National Park, Korea vol.44, pp.4, 2011, https://doi.org/10.5941/myco.2016.44.4.217
  7. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation vol.9, pp.1, 2011, https://doi.org/10.1007/s13205-018-1529-z
  8. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review vol.82, pp.7, 2011, https://doi.org/10.1021/acs.jnatprod.9b00110
  9. Long term ditch-buried straw return affects soil fungal community structure and carbon-degrading enzymatic activities in a rice-wheat rotation system vol.155, pp.None, 2011, https://doi.org/10.1016/j.apsoil.2020.103660
  10. Seed Biopriming With Trichoderma Strains Isolated From Tree Bark Improves Plant Growth, Antioxidative Defense System in Rice and Enhance Straw Degradation Capacity vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.633881
  11. Trichoderma-mediated rice straw compost promotes plant growth and imparts stress tolerance vol.28, pp.32, 2011, https://doi.org/10.1007/s11356-021-13701-3
  12. Water-Covered Depth with the Freeze-Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition vol.11, pp.11, 2011, https://doi.org/10.3390/agriculture11111113