DOI QR코드

DOI QR Code

Monitoring of Environmental Arsenic by Cultures of the Photosynthetic Bacterial Sensor Illuminated with a Near-Infrared Light Emitting Diode Array

  • Received : 2011.05.12
  • Accepted : 2011.07.29
  • Published : 2011.12.28

Abstract

Recombinant Rhodopseudomonas palustris, harboring the carotenoid-metabolizing gene crtI (CrtIBS), and whose color changes from greenish yellow to red in response to inorganic As(III), was cultured in transparent microplate wells illuminated with a light emitting diode (LED) array. The cells were seen to grow better under near-infrared light, when compared with cells illuminated with blue or green LEDs. The absorbance ratio of 525 to 425 nm after cultivation for 24 h, which reflects red carotenoid accumulation, increased with an increase in As(III) concentrations. The detection limit of cultures illuminated with near-infrared LED was 5 ${\mu}g$/l, which was equivalent to that of cultures in test tubes illuminated with an incandescent lamp. A near-infrared LED array, in combination with a microplate, enabled the simultaneous handling of multiple cultures, including CrtIBS and a control strain, for normalization by the illumination of those with equal photon flux densities. Thus, the introduction of a near-infrared LED array to the assay is advantageous for the monitoring of arsenic in natural water samples that may contain a number of unknown factors and, therefore, need normalization of the reporter event.

Keywords

References

  1. Argos, M., T. Kalra, P. J. Rathouz, Y. Chen, B. Pierce, F. Parvez, et al. 2010. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 376: 252-258. https://doi.org/10.1016/S0140-6736(10)60481-3
  2. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6: 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
  3. Bertling, K., T. J. Hurse, U. Kappler, and A. D. Rakic. 2006. Lasers - an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol. Bioeng. 94: 337-345. https://doi.org/10.1002/bit.20881
  4. Bohne, F. and H. Linden. 2002. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1579: 26-34. https://doi.org/10.1016/S0167-4781(02)00500-6
  5. Chen, C. J., Y. C. Chuang, S. L. You, T. M. Lin, and H. Y. Wu. 1986. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br. J. Cancer 53: 399-405. https://doi.org/10.1038/bjc.1986.65
  6. Feliciano, J., S. Xu, X. Guan, H. J. Lehmler, L. G. Bachas, and S. Daunert. 2006. ClcR-based biosensing system in the detection of cis-dihydroxylated (chloro-)biphenyls. Anal. Bioanal. Chem. 385: 807-813. https://doi.org/10.1007/s00216-006-0505-3
  7. Ferreccio, C., C. Gonzalez, V. Milosavjlevic, G. Marshall, A. M. Sancha, and A. H. Smith. 2000. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11: 673-679. https://doi.org/10.1097/00001648-200011000-00010
  8. Frisbie, S. H., E. J. Mitchell, L. J. Mastera, D. M. Maynard, A. Z. Yusuf, M. Y. Siddiq, et al. 2009. Public health strategies for western Bangladesh that address arsenic, manganese, uranium, and other toxic elements in drinking water. Environ. Health Perspect. 117: 410-416.
  9. Harms, H., M. C. Wells, and J. R. van der Meer. 2006. Wholecell living biosensors - are they ready for environmental application? Appl. Microbiol. Biotechnol. 70: 273-280. https://doi.org/10.1007/s00253-006-0319-4
  10. Hopenhayn-Rich, C., M. L. Biggs, and A. H. Smith. 1998. Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int. J. Epidemiol. 27: 561-569. https://doi.org/10.1093/ije/27.4.561
  11. Hynninen, A. and M. Virta. 2010. Whole-cell bioreporters for the detection of bioavailable metals. Adv. Biochem. Eng. Biotechnol. 118: 31-63.
  12. Inui, M., J. H. Roh, K. Zahn, and H. Yukawa. 2000. Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl. Environ. Microbiol. 66: 54-63. https://doi.org/10.1128/AEM.66.1.54-63.2000
  13. Kawakami, Y., M. S. Siddiki, K. Inoue, H. Otabayashi, K. Yoshida, S. Ueda, et al. 2011. Application of fluorescent protein-tagged trans factors and immobilized cis elements to monitoring of toxic metals based on in vitro protein-DNA interactions. Biosens. Bioelectron. 26: 1466-1473.
  14. Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60: 235-245. https://doi.org/10.1016/j.mimet.2004.09.018
  15. Lababpour, A., K. Hada, K. Shimahara, T. Katsuda, and S. Katoh. 2004. Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis. J. Biosci. Bioeng. 98: 452-456.
  16. Maeda, I., H. Miyasaka, F. Umeda, M. Kawase, and K. Yagi. 2003. Maximization of hydrogen production ability in highdensity suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxybutyrate) as sole substrate. Biotechnol. Bioeng. 81: 474-481. https://doi.org/10.1002/bit.10494
  17. Morales, K. H., L. Ryan, T. L. Kuo, M. M. Wu, and C. J. Chen. 2000. Risk of internal cancers from arsenic in drinking water. Environ. Health Perspect. 108: 655-661. https://doi.org/10.1289/ehp.00108655
  18. Parvez, F., Y. Chen, M. Argos, A. Z. Hussain, H. Momotaj, R. Dhar, et al. 2006. Prevalence of arsenic exposure from drinking water and awareness of its health risks in a Bangladeshi population: Results from a large population-based study. Environ Health Perspect. 114: 355-359.
  19. Tani, C., K. Inoue, Y. Tani, M. Harun-ur-Rashid, N. Azuma, S. Ueda, et al. 2009. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoterreporter units in tandem for detection of arsenic. J. Biosci. Bioeng. 108: 414-420. https://doi.org/10.1016/j.jbiosc.2009.05.014
  20. Tsuda, T., A. Babazono, E. Yamamoto, N. Kurumatani, Y. Mino, T. Ogawa, et al. 1995. Ingested arsenic and internal cancer: A historical cohort study followed for 33 years. Am. J. Epidemiol. 141: 198-209.
  21. Xu, C., W. Shi, and B. P. Rosen. 1996. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J. Biol. Chem. 271: 2427-2432. https://doi.org/10.1074/jbc.271.5.2427
  22. Yagi, K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 73: 1251-1258. https://doi.org/10.1007/s00253-006-0718-6
  23. Yang, C. Y., C. C. Chang, S. C. Ho, and H. F. Chiu. 2008. Is colon cancer mortality related to arsenic exposure? J. Toxicol. Environ. Health A 71: 533-538. https://doi.org/10.1080/15287390801907509
  24. Yoshida, K., K. Inoue, Y. Takahashi, S. Ueda, K. Isoda, K. Yagi, and I. Maeda. 2008. Novel carotenoid-based biosensor for simple visual detection of arsenite: Characterization and preliminary evaluation for environmental application. Appl. Environ. Microbiol. 74: 6730-6738. https://doi.org/10.1128/AEM.00498-08
  25. Yoshida, K., D. Yoshioka, K. Inoue, S. Takaichi, and I. Maeda. 2007. Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors. Appl. Microbiol. Biotechnol. 76: 1043-1050. https://doi.org/10.1007/s00253-007-1079-5

Cited by

  1. Variation in composition and relative content of accumulated photopigments in a newly isolatedRhodobacter capsulatusstrain XJ-1 in response to arsenic vol.49, pp.13, 2011, https://doi.org/10.1080/10934529.2014.937168