DOI QR코드

DOI QR Code

Identification of Virulence Factors in Vibrio vulnificus by Comparative Transcriptomic Analyses between Clinical and Environmental Isolates Using cDNA Microarray

  • Kim, In-Hwang (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Byung-Soo (Department of Applied Statistics, Yonsei University) ;
  • Lee, Kyung-Shin (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Ik-Joong (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Son, Jee-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Kun-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Received : 2011.11.07
  • Accepted : 2011.11.28
  • Published : 2011.12.28

Abstract

We compared the gene expression among four clinical and five environmental V. vulnificus isolates, using a cDNA microarray containing 131 genes possibly associated with pathogenicity, transport, signal transduction, and gene regulations in the pathogen. cDNAs from total RNAs of these isolates were hybridized into the cDNA microarray using the cDNA of the wild-type strain MO6-24/O as a reference. We focused on selecting differentially expressed (DE) genes between clinical and environmental isolates using a modified t-statistic. We could detect two statistically significant DE genes between virulent isolates and less-virulent isolates with a marginal statistical significance (p-value of 0.008). These were genes putatively encoding pilin and adenlyate cylase. Real time-PCR confirmed that these two selected genes transcribed in significantly higher levels in virulent isolates than in less-virulent isolates. Mutants with lesions in the gene encoding pilin showed significantly higher $LD_{50}$ values than that of wild type.

Keywords

References

  1. Blake, P. A., M. H. Merson, R. E. Weaver, D. G. Hollis, and P. C. Heublein. 1979. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N. Engl. J. Med. 300: 1-5. https://doi.org/10.1056/NEJM197901043000101
  2. Churchill, G. A. 2002. Fundamentals of experimental design for cDNA microarrays. Nature Genet. (Supplement) 32: 490-495. https://doi.org/10.1038/ng1031
  3. Dudoit, S., J. P. Shaffer, and J. C. Boldrick. 2003. Multiple hypothesis testing in microarray experiments. Stat. Sci. 18: 71-103. https://doi.org/10.1214/ss/1056397487
  4. Fujita, A., J. R. Sato, L. O. Rodrigues, C. E. Ferreira, and M. C. Sogayar. 2006. Evaluating different methods of microarray data normalization. BMC Bioinformatics 7: 469. https://doi.org/10.1186/1471-2105-7-469
  5. Glickmann, E., L. Gardan, S. Jacquet, S. Hussain, M. Elasri, A. Petit, and Y. Dessaux. 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant Microbe Interact. 11: 156-162. https://doi.org/10.1094/MPMI.1998.11.2.156
  6. Jeong, H. S., H. H. Lee, K.-H. Lee, S.-J. Park, and S. H. Choi. 2003. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J. Biol. Chem. 278: 45072-45081. https://doi.org/10.1074/jbc.M308184200
  7. Johnson, D. E., F. M. Calia, D. M. Musher, and A. Goree. 1984. Resistance of Vibrio vulnificus to serum bactericidal and opsonizing factors: Relation to virulence in suckling mice and humans. J. Infect. Dis. 150: 413-418. https://doi.org/10.1093/infdis/150.3.413
  8. Kim, I. H., J.-I. Shim, K.-E. Lee, W. Hwang, I.-J. Kim, S.-H. Choi, and K.-S. Kim. 2008. Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O. J. Microbiol. Biotechnol. 18: 35-42.
  9. Kreger, A., L. DeChatelet, and P. Shirley. 1981. Interaction of Vibrio vulnificus with human polymorphonuclear leukocytes: Association of virulence with resistance to phagocytosis. J. Infect. Dis. 144: 244-248. https://doi.org/10.1093/infdis/144.3.244
  10. Lee, S. E., P. Y. Ryu, S. Y. Kim, Y. R. Kim, J. T. Koh, O. J. Kim, et al. 2004. Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem. Biophys. Res. Commun. 324: 86-91. https://doi.org/10.1016/j.bbrc.2004.09.020
  11. Milton, D. L. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178: 1310-1319.
  12. Morris, J. G. and R. E. Black. 1985. Cholera and other vibrioses in the United States. N. Engl. J. Med. 312: 343-350. https://doi.org/10.1056/NEJM198502073120604
  13. Miyoshi, S. 2006. Vibrio vulnificus infection and metalloprotease. J. Dermatol. 33: 589-595. https://doi.org/10.1111/j.1346-8138.2006.00139.x
  14. Panicker, G., D. R. Call, M. J. Krug, and A. K. Bej. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444. https://doi.org/10.1128/AEM.70.12.7436-7444.2004
  15. Park, D.-K., K.-E. Lee, C.-H. Baek, I. H. Kim, J.-H. Kwon, W. K. Lee, et al. 2006. Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. J. Bacteriol. 188: 2214-2221. https://doi.org/10.1128/JB.188.6.2214-2221.2006
  16. Rosche, T. M., Y. Yano, and J. D. Oliver. 2005. A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol. Immunol. 49: 381-389.
  17. Schena, M., R. A. Heller, K. Theriault, T. P. Konrad, E. Lachenmeier, and R. W. Davis. 1999. Microarrays: Biotechnology's discovery platform for functional genomics. Trends Biotechnol. 17: 217-218. https://doi.org/10.1016/S0167-7799(99)01329-3
  18. Smyth, G. K. 2004. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3: Article 3.
  19. Stelma Jr., G. N., A. L. Reyes, J. T. Peeler, C. H. Johnson, and P. L. Spaulding. 1992. Virulence characteristics of clinical and environmental isolates of Vibrio vulnificus. Appl. Environ. Microbiol. 58: 2776-2782.
  20. Strom, M. S. and R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2: 177-188. https://doi.org/10.1016/S1286-4579(00)00270-7
  21. Taylor, L. A. and R. E. Rose. 1988. A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res. 16: 358. https://doi.org/10.1093/nar/16.1.358
  22. Tison, D. L. and M. T. Kelly. 1986 Virulence of Vibrio vulnifiucs strains from marine environments. Appl. Environ. Microbiol. 51: 1004-1006.
  23. Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, et al. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17: 520-525. https://doi.org/10.1093/bioinformatics/17.6.520
  24. Webster, A. C. and C. M. Litwin. 2000. Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infect. Immun. 68: 526-534. https://doi.org/10.1128/IAI.68.2.526-534.2000
  25. Wolfgan, M. C., V. T. Lee, M. E. Gilmore, and S. Lory. 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signal pathway. Dev. Cell 4: 253-263. https://doi.org/10.1016/S1534-5807(03)00019-4
  26. Wright, A. C., J. G. Morris Jr., D. R. Maneval Jr., K. Richardson, and J. B. Backer. 1985. Cloning of the cytotoxinhemolysin gene of Vibrio vulnificus. Infect. Immun. 50: 922-924.
  27. Yamashiro, T., N. Nakasone, and M. Iwanaga. 1993. Purification and characterization of pili of a Vibrio cholera Non-O1 strain. Infect. Immun. 61: 5398-5400.
  28. Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. 2002. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15. https://doi.org/10.1093/nar/30.4.e15
  29. Yoshida, S.-I., M. Ogawa, and Y. Mizuguchi. 1985. Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect. Immun. 47: 446-451.
  30. Yuan, J. S., A. Reed, F. Chen, and C. N. Stewart Jr. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics 7: 85. https://doi.org/10.1186/1471-2105-7-85

Cited by

  1. Genome-Wide SNP-Genotyping Array to Study the Evolution of the Human Pathogen Vibrio vulnificus Biotype 3 vol.9, pp.12, 2011, https://doi.org/10.1371/journal.pone.0114576
  2. Vibrio vulnificus Secretes an Insulin-degrading Enzyme That Promotes Bacterial Proliferation in Vivo vol.290, pp.30, 2011, https://doi.org/10.1074/jbc.m115.656306
  3. Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy vol.8, pp.None, 2011, https://doi.org/10.3389/fmicb.2017.02613
  4. Application of a Peptide Nucleic Acid-Based Asymmetric Real-Time PCR Method for Rapid Detection of Vibrio cholerae vol.20, pp.12, 2019, https://doi.org/10.5762/kais.2019.20.12.117
  5. Exploring the Pathogenic Potential of Vibrio vulnificus Isolated from Seafood Harvested along the Mangaluru Coast, India vol.8, pp.7, 2020, https://doi.org/10.3390/microorganisms8070999