DOI QR코드

DOI QR Code

Source Tracking of Fecal Contamination at Ansan Stream Using Multiple Antibiotic Resistance Analysis

Multiple Antibiotic Resistance Analysis를 이용한 안산천 분변성 미생물 오염원 추적

  • Lee, Sang-Min (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lee, Jin (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Moon-Il (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Yoon, Hyun-Sik (Department of Water Supply and Sewerage, Korea Environment Corporation)
  • 이상민 (한양대학교 건설환경공학과) ;
  • 이진 (한양대학교 건설환경공학과) ;
  • 김문일 (한양대학교 건설환경공학과) ;
  • 윤현식 (한국환경공단 상하수도지원처)
  • Received : 2010.06.01
  • Accepted : 2011.11.28
  • Published : 2011.11.30

Abstract

In this study, fecal nonpoint pollutant sources tracking were conducted on Ansan stream. Multiple Antibiotic Resistance Analysis (MARA) method used in this study is based on the premise that fecal bacteria derived from intestine of human or animal has each different resistance for antibiotics. First of all, a database for known sources should be established to use the method and then, an unknown sample was applied on the database to find unknown sources by statistical analysis. The Ansan stream was considered with divided condition into three parts: upper (livestock farming area), mid (old section of the city), and downstream (new section of the city) to search an environmental influence of the stream basin. As results of the statistical analysis, it could be estimated that the upper stream area was influenced by animals due to the nature of influence for the livestock farms located in this area because livestock were classified as percentages of 45.8% in 3-way method divided into livestock, pet and human. In case of midstream and downstream, the human influence was remarkable as percentage of 60% and 80%, respectively. From these results, it could be judged that the MARA method is useful in source tracking the non-point pollutant sources because the MARA results correspond to which predictable non-point pollutant sources by a field study. Also, it is expected that a more effective source tracking will be possible as establishing database of each area.

본 연구에서는 안산천을 대상으로 하천의 비점오염원 추적조사를 하였다. 사용된 Multiple Antibiotic Resistance Analysis (MARA) 기법은 사람과 각각의 동물의 장을 통해 배출되는 분변성 미생물들이 항생제에 대한 저항 정도가 다름을 이용하여 기지의 미생물에 대해 데이터베이스를 구축하고 미지 시료에 대해 통계적 분석을 통해 오염원을 찾아내는 방법이다. 안산천 유역을 크게 상류(축산농가지역), 중류(구시가지), 그리고 하류(신시가지) 지역으로 나누어 하천 유역의 환경적인 영향을 알아보고자 하였다. 통계 분석 결과, 가축, 애완 동물, 사람으로 구분한 3-Way 방법의 경우 45.8%가 가축으로 분류되어 상류 지역은 축산 농가 지역의 특성상 동물에 의한 영향이 큰 것으로 판단할 수 있었다. 중류는 구시가지 지역으로써 인간의 영향이 60% 이상으로 나타났으며, 하류 지역 역시 신시가지 지역으로 인간의 영향이 80% 이상으로 나타났다. 실제 현장 조사를 근거로 예상할 수 있었던 비점오염원과 MARA를 통한 분석 결과가 매우 일치하는 모습을 통해 비점오염원 추적을 위한 MARA기법의 유용성을 판단할 수 있었으며, 각 지역의 특성에 맞는 데이터 베이스 구축을 통해 효과적인 비점오염원의 추적이 가능할 것으로 기대된다.

Keywords

References

  1. Sinton, L. W., A. M. Donnison, and C. M. Hastie, "Faecal streptococci as faecal pollution indicators: a review. II. Sanitary significance, survival, and use," N. Z. J. Mar. Freshwater Res., 27, 117-137(1993). https://doi.org/10.1080/00288330.1993.9516550
  2. William, P. Hamilton, Moonil, Kim, Edward, and L. Thackston., "Deducing Sources of Fecal Bacteria in Urban Streams using Antibiotic Resistance Analysis and Classic Source Tracking Techniques," ASCE J. Environ. Eng. (Accepted)(2007).
  3. Cynthia, L. M., Klaas, B., Rick, N. and Asit, M. "Source tracking fecal bacteria in water: a critical review of current methods." J. Environ. Manage., 73, pp. 71-79(2004). https://doi.org/10.1016/j.jenvman.2004.06.001
  4. Gordon, D. M., "Geographical structure and host specificity in bacteria and the implications for tracking the source of coliform contamination," Microbiol. 147, 1079-1085 (2001). https://doi.org/10.1099/00221287-147-5-1079
  5. Noblet, J. A., Young, D. L., Zeng, E. Y. and Ensari, S, "Use of fecal steroids to infer the source of fecal indicator bacteria in the Lower Santa Ana River Watershed, California: Sewage is unlikely a significant source," Environ. Sci. Technol., 38, 6002-6008(2004). https://doi.org/10.1021/es049799v
  6. Harwood, V. J., Whitlock, J. and Withington, V. H., "Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters," Appl. Environ. Microbiol., 66(3), 3698-3704(2000). https://doi.org/10.1128/AEM.66.9.3698-3704.2000
  7. John, E. Whitlock, David, T. Jones, and Valerie, J. Harwood, "Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis," Water Res., 36, 4273-4282(2002). https://doi.org/10.1016/S0043-1354(02)00139-2
  8. Wiggins, B. A., "Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution," Appl. Environ. Microbiol., 63, 3997-4002(1996).
  9. APHA, WEF and AWWA "Standard Method for examination of water and wastewater." APHA WEF AWWA(2005).
  10. Burton, A, D. Gunnison, and G. Lanza, "Survival of Pathogenic Bacteria in Various Freshwater Sediments." Appl. Environ. Microbiol., 53(4), 633-638 (1987).
  11. 정영해, "통계자료분석(SPSS 14.0)," 한국사회조사연구소 (2008)