DOI QR코드

DOI QR Code

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature

$NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거

  • Byun, Young-Chul (Environment Research Department, Research Institute of Industrial Science & Technology) ;
  • Lee, Ki-Man (Environment Research Department, Research Institute of Industrial Science & Technology) ;
  • Koh, Dong-Jun (Environment Research Department, Research Institute of Industrial Science & Technology) ;
  • Shin, Dong-Nam (Environment Research Department, Research Institute of Industrial Science & Technology)
  • 변영철 (포항산업과학연구원 환경연구실) ;
  • 이기만 (포항산업과학연구원 환경연구실) ;
  • 고동준 (포항산업과학연구원 환경연구실) ;
  • 신동남 (포항산업과학연구원 환경연구실)
  • Received : 2010.11.02
  • Accepted : 2011.01.14
  • Published : 2011.01.31

Abstract

NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).

$250{\sim}400^{\circ}C$ 범위에서 $NO_x$ 제거를 위해 운영되는 선택적 촉매 환원법의 반응 온도를 $200^{\circ}C$ 이하로 낮추기 위해서는 NO를 $NO_2$로 산화시키는 전처리 공정을 필요로 한다. 이번 연구에서는 분말 $NaClO_2(s)$를 이용하여 NO를 $NO_2$로 산화시킨 후, 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$, $SO_2$ 동시 제거에 관한 실험실 규모 실험과 제철소 소결 공장에서 실제 배기가스를 이용하는 bench 규모 실험을 진행하였다. 실험실 규모 실험에서는 반응기에 $NaClO_2(s)$ (2.4~3.6 g)를 충진 하여 $NO_x$ 200 ppm, $SO_2$ 75 ppm, $H_2O$ 10%, $O_2$ 15%의 모사가스(2.6 L/min)를 통과시켰으며, $NaClO_2(s)$와 반응 후의 모사가스를 탄소 분산형 촉매가 충진 된 반응기(공간 속도 = $2,000hr^{-1}$)로 주입하였다. bench 규모 실험에서는 $50Nm^3/hr$의 배기가스 유량에 screw feeder로 $NaClO_2(s)$ 분말을 주입하여 NO를 $NO_2$로 산화 시킨 후, $1,000hr^{-1}$ 탄소 분산형 촉매를 통과하여 $NO_x$ 제거 가능성을 확인하였다. 실험실 규모와 bench 규모 실험 모두 $SO_2$를 측정하며 $NO_x$, $SO_2$ 동시 제거 가능성을 확인하였다. 그 결과 실험실 규모와 bench 규모 실험 모두 $NaClO_2(s)$에 의하여 NO가 $NO_2$로 산화되었고, 이를 결합한 탄소 분산형 촉매에서 90% 이상의 $NO_x$, $SO_2$ 제거 효율을 나타내는 것을 확인하였다. 이상의 실험 결과로부터 $NaClO_2(s)$와 탄소 분산형 촉매의 결합은 저온에서 $NO_x$$SO_2$를 동시에 제거할 수 있음을 알 수 있었다.

Keywords

References

  1. Broer, S. and Hammer, T., "Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a $V_{2}O_{5}-WO_{2}/TiO_{2}$ catalyst," Appl. Catal. B: Environ., 28, 101-111(2000). https://doi.org/10.1016/S0926-3373(00)00166-1
  2. Mok, Y. S., "Combined desulphurization and denitrification using dielectric barrier discharge and wet reduction technique," J. Chem. Eng. Japan, 39, 366-372(2006). https://doi.org/10.1252/jcej.39.366
  3. Ahmed, S. N., Stencel, J. M., Derbyshire, F. J. and Baldwin, R. M., "Activated carbons for the removal of nitric oxide," Fuel Process. Technol., 34, 123-136(1994).
  4. Odenbrand, C. U. I., Andersson, L. A. H., Brandin, J. G. M. and Lundin, S. T., "Catalytic reduction of nitrogen oxides. 2. The reduction of $NO_{2}$," Appl. Catal., 27, 363-377(1986). https://doi.org/10.1016/S0166-9834(00)82931-0
  5. Olsson, L., Westerberg, B., Persson, H., Fridell, E., Skoglundh, M. and Andersson, B., "A kinetic study of oxygen adsorption/desorption and NO oxidation over $Pt/Al_{2}O_{3}$ catalysts," J. Phys. Chem. B, 103, 10433-10439(1999).
  6. Mok, Y. S., Koh, D. J., Shin, D. N. and Kim, K. T., "Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process," Fuel Process. Technol., 86, 303-317(2004). https://doi.org/10.1016/j.fuproc.2004.05.004
  7. Deshwal, B. R., Lee, S. H., Jung, J. H., Shon, B. H. and Lee, H. K., "Study on the removal of $NO_{x}$ from simulated flue gas using acidic $NaClO_{2}$ solution," J. Environ. Sci., 20, 33-38(2008). https://doi.org/10.1016/S1001-0742(08)60004-2
  8. Chien, T. W. and Chu, H., "Removal of $SO_{2}$ and NO from flue gas by wet scrubbing using an aqueous $NaClO_{2}$ solution," J. Hazard. Mater., B80, 43-57(2000). https://doi.org/10.1016/S0304-3894(00)00274-0
  9. Brogren, C., Karlsson, H. T. and Bjerle, I., "Absorption of NO in an aqueous solution of $NO_{2}$," Chem. Eng. Technol., 21, 61-70(1998). https://doi.org/10.1002/(SICI)1521-4125(199801)21:1<61::AID-CEAT61>3.0.CO;2-0
  10. Lee, H. K., Deshwal, B. R. and Yoo, K. S., "Simultaneous removal of $SO_{2}$ and NO by sodium chlorite solution in wettedwall column," Korean J. Chem. Eng., 22, 208-213(2005). https://doi.org/10.1007/BF02701486
  11. Byun, Y., Ko, K. B., Cho, M., Namkung, W., Lee, K., Shin, D. N. and Koh, D. J., "Reaction pathways of NO oxidation by sodium chlorite powder," Environ. Sci. Technol., 43, 5054-5059(2009). https://doi.org/10.1021/es900152b
  12. Byun, Y., Cho, M., Namkung, W., Lee, K., Koh, D. J. and Shin, D. N., "Insight into the unique oxidation chemistry of elemental mercury by chlorine-containing species: Experiment and simulation," Environ. Sci. Technol., 44, 1624-1629(2009).
  13. Lee, K., Byun, Y., Koh, D. J., Shin, D. N., Kim, K. T., Ko, K. B., Cho, M. and Namkung, W., "Characteristics of NO oxidation using $NaClO_{2}$(s)," Korean Chem. Eng. Res., 46, 988-993(2008).
  14. Byun, Y., Lee, K., Kim, J., Koh, D. J. and Shin, D. N., "Preliminary evaluation of $NaClO_{2}$ powder injection method for mercury oxidation: Bench scale experiment using ironore sintering flue gas," Korean J. Chem. Eng. in press.
  15. Sakanishi, K., Wu, Z., Matsumura, A., Saito, I., Hanaoka, T., Miniwa, T., Tada, M. and Iwasaki, T., "Simultaneous removal of $H_{2}S$ and COS using activated carbons and their supported catalysts," Catal. Today, 104, 94-100(2005). https://doi.org/10.1016/j.cattod.2005.03.060
  16. Guo, Z., Xie, Y., Hong, I. and Kim, J., "Catalytic oxidation of NO to $NO_{2}$ on activated carbon," Energy Convers. Manage., 42, 2005-2018(2001). https://doi.org/10.1016/S0196-8904(01)00058-9
  17. Mochida, I., Kawabuchi, Y., Kawano, S., Matsumura, Y. and Yoshikawa, M., "High catalytic activity of pitch based activated carbon fibers of moderate surface area for oxidation of NO to $NO_{2}$ at room temperature," Fuel, 76, 543-548 (1997). https://doi.org/10.1016/S0016-2361(96)00223-2
  18. Koebel, M., Madia, G. and Elsener, M., "Selective catalytic reduction of NO and $NO_{2}$ at low temperature," Catal. Today, 73, 239-247(2002). https://doi.org/10.1016/S0920-5861(02)00006-8
  19. Mok, Y. S., Dors, M. and Mizerazcyk, J., "Effect of reaction temperature on $NO_{x}$ removal and formation of ammonium nitrate in nonthermal plasma process combined with selective catalytic reduction," IEEE Trans. Plasma Sci., 32, 799-807(2004). https://doi.org/10.1109/TPS.2004.826057
  20. Huang, Z., Zhu, Z. and Liu, Z., "Combined effect of $H_{2}O$and $SO_{2}$ on $V_{2}O_{5}/AC$ catalysts for NO reduction with ammonia at lower temperatures," Appl. Catal. B: Environ., 39, 361-368(2002). https://doi.org/10.1016/S0926-3373(02)00122-4
  21. Zhu, Z, Liu, Z., Niu, H., Liu, S., Hu, T., Liu, T. and Xie, Y., "Mechanism of $SO_{2}$ promotion for NO reduction with $NH_{3}$ over activated carbon-supported vanadium oxide catalyst," J. Catal., 197, 6-16(2001). https://doi.org/10.1006/jcat.2000.3052
  22. Zhu, Z., Liu, Z., Liu, S. and Niu, H., "Catalytic NO reduction with ammonia at low temperature on $V_{2}O_{5}/AC$ catalysts: effect of metal oxides addition and $SO_{2}$," Appl. Catal. B: Environ., 30, 267-276(2001). https://doi.org/10.1016/S0926-3373(00)00239-3

Cited by

  1. Study of the Olefin Adhesion Layer Produced by Melt-blowing LDPE vol.53, pp.2, 2016, https://doi.org/10.12772/TSE.2016.53.068