References
-
Broer, S. and Hammer, T., "Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a
$V_{2}O_{5}-WO_{2}/TiO_{2}$ catalyst," Appl. Catal. B: Environ., 28, 101-111(2000). https://doi.org/10.1016/S0926-3373(00)00166-1 - Mok, Y. S., "Combined desulphurization and denitrification using dielectric barrier discharge and wet reduction technique," J. Chem. Eng. Japan, 39, 366-372(2006). https://doi.org/10.1252/jcej.39.366
- Ahmed, S. N., Stencel, J. M., Derbyshire, F. J. and Baldwin, R. M., "Activated carbons for the removal of nitric oxide," Fuel Process. Technol., 34, 123-136(1994).
-
Odenbrand, C. U. I., Andersson, L. A. H., Brandin, J. G. M. and Lundin, S. T., "Catalytic reduction of nitrogen oxides. 2. The reduction of
$NO_{2}$ ," Appl. Catal., 27, 363-377(1986). https://doi.org/10.1016/S0166-9834(00)82931-0 -
Olsson, L., Westerberg, B., Persson, H., Fridell, E., Skoglundh, M. and Andersson, B., "A kinetic study of oxygen adsorption/desorption and NO oxidation over
$Pt/Al_{2}O_{3}$ catalysts," J. Phys. Chem. B, 103, 10433-10439(1999). - Mok, Y. S., Koh, D. J., Shin, D. N. and Kim, K. T., "Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process," Fuel Process. Technol., 86, 303-317(2004). https://doi.org/10.1016/j.fuproc.2004.05.004
-
Deshwal, B. R., Lee, S. H., Jung, J. H., Shon, B. H. and Lee, H. K., "Study on the removal of
$NO_{x}$ from simulated flue gas using acidic$NaClO_{2}$ solution," J. Environ. Sci., 20, 33-38(2008). https://doi.org/10.1016/S1001-0742(08)60004-2 -
Chien, T. W. and Chu, H., "Removal of
$SO_{2}$ and NO from flue gas by wet scrubbing using an aqueous$NaClO_{2}$ solution," J. Hazard. Mater., B80, 43-57(2000). https://doi.org/10.1016/S0304-3894(00)00274-0 -
Brogren, C., Karlsson, H. T. and Bjerle, I., "Absorption of NO in an aqueous solution of
$NO_{2}$ ," Chem. Eng. Technol., 21, 61-70(1998). https://doi.org/10.1002/(SICI)1521-4125(199801)21:1<61::AID-CEAT61>3.0.CO;2-0 -
Lee, H. K., Deshwal, B. R. and Yoo, K. S., "Simultaneous removal of
$SO_{2}$ and NO by sodium chlorite solution in wettedwall column," Korean J. Chem. Eng., 22, 208-213(2005). https://doi.org/10.1007/BF02701486 - Byun, Y., Ko, K. B., Cho, M., Namkung, W., Lee, K., Shin, D. N. and Koh, D. J., "Reaction pathways of NO oxidation by sodium chlorite powder," Environ. Sci. Technol., 43, 5054-5059(2009). https://doi.org/10.1021/es900152b
- Byun, Y., Cho, M., Namkung, W., Lee, K., Koh, D. J. and Shin, D. N., "Insight into the unique oxidation chemistry of elemental mercury by chlorine-containing species: Experiment and simulation," Environ. Sci. Technol., 44, 1624-1629(2009).
-
Lee, K., Byun, Y., Koh, D. J., Shin, D. N., Kim, K. T., Ko, K. B., Cho, M. and Namkung, W., "Characteristics of NO oxidation using
$NaClO_{2}$ (s)," Korean Chem. Eng. Res., 46, 988-993(2008). -
Byun, Y., Lee, K., Kim, J., Koh, D. J. and Shin, D. N., "Preliminary evaluation of
$NaClO_{2}$ powder injection method for mercury oxidation: Bench scale experiment using ironore sintering flue gas," Korean J. Chem. Eng. in press. -
Sakanishi, K., Wu, Z., Matsumura, A., Saito, I., Hanaoka, T., Miniwa, T., Tada, M. and Iwasaki, T., "Simultaneous removal of
$H_{2}S$ and COS using activated carbons and their supported catalysts," Catal. Today, 104, 94-100(2005). https://doi.org/10.1016/j.cattod.2005.03.060 -
Guo, Z., Xie, Y., Hong, I. and Kim, J., "Catalytic oxidation of NO to
$NO_{2}$ on activated carbon," Energy Convers. Manage., 42, 2005-2018(2001). https://doi.org/10.1016/S0196-8904(01)00058-9 -
Mochida, I., Kawabuchi, Y., Kawano, S., Matsumura, Y. and Yoshikawa, M., "High catalytic activity of pitch based activated carbon fibers of moderate surface area for oxidation of NO to
$NO_{2}$ at room temperature," Fuel, 76, 543-548 (1997). https://doi.org/10.1016/S0016-2361(96)00223-2 -
Koebel, M., Madia, G. and Elsener, M., "Selective catalytic reduction of NO and
$NO_{2}$ at low temperature," Catal. Today, 73, 239-247(2002). https://doi.org/10.1016/S0920-5861(02)00006-8 -
Mok, Y. S., Dors, M. and Mizerazcyk, J., "Effect of reaction temperature on
$NO_{x}$ removal and formation of ammonium nitrate in nonthermal plasma process combined with selective catalytic reduction," IEEE Trans. Plasma Sci., 32, 799-807(2004). https://doi.org/10.1109/TPS.2004.826057 -
Huang, Z., Zhu, Z. and Liu, Z., "Combined effect of
$H_{2}O$ and$SO_{2}$ on$V_{2}O_{5}/AC$ catalysts for NO reduction with ammonia at lower temperatures," Appl. Catal. B: Environ., 39, 361-368(2002). https://doi.org/10.1016/S0926-3373(02)00122-4 -
Zhu, Z, Liu, Z., Niu, H., Liu, S., Hu, T., Liu, T. and Xie, Y., "Mechanism of
$SO_{2}$ promotion for NO reduction with$NH_{3}$ over activated carbon-supported vanadium oxide catalyst," J. Catal., 197, 6-16(2001). https://doi.org/10.1006/jcat.2000.3052 -
Zhu, Z., Liu, Z., Liu, S. and Niu, H., "Catalytic NO reduction with ammonia at low temperature on
$V_{2}O_{5}/AC$ catalysts: effect of metal oxides addition and$SO_{2}$ ," Appl. Catal. B: Environ., 30, 267-276(2001). https://doi.org/10.1016/S0926-3373(00)00239-3
Cited by
- Study of the Olefin Adhesion Layer Produced by Melt-blowing LDPE vol.53, pp.2, 2016, https://doi.org/10.12772/TSE.2016.53.068