DOI QR코드

DOI QR Code

Factors Affecting Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent

다양한 페놀성 물질과 Folin-Ciocalteu 시약의 반응성에 미치는 영향 요인 평가

  • Hong, Jung-Il (Division of Food Science, College of Natural Science, Seoul Women's University) ;
  • Kim, Hyun-Jung (Division of Food Science, College of Natural Science, Seoul Women's University) ;
  • Kim, Ji-Yun (Division of Food Science, College of Natural Science, Seoul Women's University)
  • 홍정일 (서울여자대학교 식품과학부) ;
  • 김현정 (서울여자대학교 식품과학부) ;
  • 김지윤 (서울여자대학교 식품과학부)
  • Received : 2010.11.05
  • Accepted : 2010.11.26
  • Published : 2011.02.28

Abstract

The Folin-Ciocalteu (F-C) reagent has been extensively used for quantifying total phenolic contents in many different types of food materials. Since several different procedures of the assay methods using the F-C reagent have been applied, we investigated changes in reactivity of various phenolic compounds with the F-C reagent under three different assay conditions and factors affecting reactivity. Among 10 standard compounds tested, compounds with high hydroxyl density (number of -OH/molecular weight) showed a largely different response according to addition sequence of the F-C reagent or $Na_2CO_3$. Preincubation in $Na_2CO_3$ significantly reduced the reactivity of the phenolic compounds bearing galloyl moiety (e.g. gallic acid, tannic acid, and epigallocatechin-3-gallate) with the F-C reagent, while monophenol compounds including ferulic acid and sinapinic acid were more stable as compared to diphenols. There was little change in response to the F-C reagent of all phenolic compounds incubated in acidic pH; their reactivity except ferulic acid was reduced significantly when incubated in neutral or alkaline pH. Changes in reactivity of gallic acid incubated in $Na_2CO_3$ or neutral/alkaline pH conditions were the most prominent. $H_2O_2$ generated from phenolic compounds did not affect the reaction with the F-C reagents. The present results suggest that reactivity of different phenolic compounds with F-C reagent was affected considerably by different procedures of the assay, and the total phenolic contents could be fluctuated according to standard compounds and assay scheme.

본 연구에서는 F-C시약을 이용한 페놀성 물질의 정량방법에서 다양한 종류의 페놀성 성분들의 반응특성 및 반응영향요인들을 분석하였다. 정량방법 중 $Na_2CO_3$를 선처리는 F-C시약을 먼저 처리하는 방법에 비해 대부분 페놀성 물질들의 발색반응도 감소를 야기하였으며, 특히 -OH 밀도가 높은 galloyl group을 가진 gallic acid 및 EGCG 등의 성분이 두드러진 감소를 나타내었다. F-C시약과 $Na_2CO_3$를 동시에 처리하는 경우 F-C시약을 선처리 하는 경우에 비해 각 페놀성 물질의 반응성이 약간 감소되는 경향을 나타내었다. 그 원인은 페놀성 물질들이 산성인 F-C시약에서보다 $Na_2CO_3$ 용액의 알칼리 환경에서 화학적으로 불안정하기 때문이며, pH 7.4 및 9의 환경에서 페놀성 물질로부터 생성된 산화물들은 F-C시약과의 반응성이 약화됨을 확인하였다. 이 과정중에 같이 형성된 $H_2O_2$는 F-C와의 반응에 직접적인 영향을 미치지 않았다. FeA와 SiA와 같은 monophenol류는 방법의 차이에 따라 큰 반응성의 변화를 나타내지 않았으며, 발색도는 느리지만 꾸준히 증가하는 kinetics 패턴을 보였다. 실제 시료에의 적용을 위해 연잎 추출물을 제조하고 각 정량방법에 대한 반응도 차이를 조사한 결과, 역시 $Na_2CO_3$ 처리환경에서 현저한 발색반응도 저하를 나타내었다. 보다 정확한 페놀성 물질의 정량을 위해 적절한 표준물질의 선택 및 정량 방법 등에 대한 표준화가 필요할 것으로 사료된다.

Keywords

References

  1. Dai J, Mumper RJ. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352. https://doi.org/10.3390/molecules15107313
  2. Jacobo-Velázquez DA, Cisneros-Zevallos L. 2009. Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. J Food Sci 74: R107-113. https://doi.org/10.1111/j.1750-3841.2009.01352.x
  3. Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333.
  4. Guo W, Kong E, Meydani M. 2009. Dietary polyphenols, inflammation, and cancer. Nutr Cancer 61: 807-810. https://doi.org/10.1080/01635580903285098
  5. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. 2005. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45: 287-306. https://doi.org/10.1080/1040869059096
  6. Prior R, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53: 4290-4302. https://doi.org/10.1021/jf0502698
  7. KFDA. Korea Food additives codes, Natural additives, 120. Defatted rice bran extract. available at: http://fa.kfda.go.kr/foodadditivescode.html. accessed Oct. 1, 2010.
  8. KFDA. Korea Food additives codes, Natural additives, 117. Tea extract. available at: http://fa.kfda.go.kr/foodadditivescode.html. accessed Oct. 1, 2010.
  9. Folin O, Dennis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  10. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  11. Budini R, Tonelli D, Girotti S. 1980. Analysis of total phenols using the Prussian blue method. J Agric Food Chem 28: 1236-1238. https://doi.org/10.1021/jf60232a056
  12. Snyder H. 1893. Notes on Lowenthal's method for the determination of tannin. J Am Chem Soc 15: 560-563. https://doi.org/10.1021/ja02120a004
  13. Bray HG, Thorpe WV. 1954. Analysis of phenolic compounds of interest in metabolism. Meth Biochem Anal 1: 27-52.
  14. Salunkhe DK, Chavan JK, Kadam SS. 1990. Dietary tannins: consequences and remedies. CRC Press Inc, Boca Raton, FL, USA. p 84-87.
  15. Peterson GL. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal Biochem 100: 201-220. https://doi.org/10.1016/0003-2697(79)90222-7
  16. Box JD. 1983. Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17: 511-525. https://doi.org/10.1016/0043-1354(83)90111-2
  17. Ikawa M, Schafer T, Dollard C, Sasner J. 2003. Utilization of Folin-Ciocalteu reagent for the detection of certain nitrogen compounds. J Agric Food Chem 51: 1811-1815. https://doi.org/10.1021/jf021099r
  18. Ainsworth EA, Gillespie KM, 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875-877. https://doi.org/10.1038/nprot.2007.102
  19. Kang S, Hong J. 2009. Ferrous ion chelating and radical scavenging properties, and cytotoxic effects of hot water extracts from lotus (Nelumbo nucifera G.). J Natural Science SWINS 21: 35-42.
  20. Bahorun T, Luximon-Ramma A, Crozier A, Aruoma OI. 2004. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J Sci Food Agr 84: 1553-1561. https://doi.org/10.1002/jsfa.1820
  21. Kaur C, Kapoor HC. 2002. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Tech 37: 153-161. https://doi.org/10.1046/j.1365-2621.2002.00552.x
  22. Altunkaya A, Gökmen V. 2008. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactucasativa). Food Chem 107: 1173-1179. https://doi.org/10.1016/j.foodchem.2007.09.046
  23. Dudonn S, Vitrac X, Coutire P, Woillez M, Mrillon JM. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57: 1768-1774. https://doi.org/10.1021/jf803011r
  24. Ha TY, Kang SH, Kwon TY, Ahn JY, Kim SR, Kim DS. 2006. Antioxidant activity and contents of bioactive components in polar microalgae. Ocean Polar Res 28: 37-43. https://doi.org/10.4217/OPR.2006.28.1.037
  25. Lee NH, Hong JI, Kim JY, Chang MH. 2009. Antioxidant properties and protective effects of Inula britannica var. chinensis Regel on oxidative stress-induced neuronal cell damage. Korean J Food Sci Technol 41: 87-92.
  26. Seo SJ, Choi Y, Lee SM, Kong S, Lee J. 2008. Antioxidant activities and antioxidant compounds of some specialty rices. J Korean Soc Food Sci Nutr 37: 129-135. https://doi.org/10.3746/jkfn.2008.37.2.129
  27. Minussia RC, Rossic M, Bolognac L, Cordib L, Rotilioc D, Pastorea GM, Durand N. 2003. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82: 409-416. https://doi.org/10.1016/S0308-8146(02)00590-3
  28. Pinelo M, Rubilar M, Jerez M, Sineiro J, Núñez MJ. 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J Agric Food Chem 53: 2111-2117. https://doi.org/10.1021/jf0488110
  29. Rababah TM, Hettiarachchy NS, Horax R. 2004. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grapeseed, ginger, rosemary, gotukola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. J Agric Food Chem 52: 5183-5186. https://doi.org/10.1021/jf049645z
  30. Zielinski H, Kozlowska H. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48: 2008-2016. https://doi.org/10.1021/jf990619o
  31. Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G. 2003. Phenolic content and antioxidant capacity of muscadine grapes. J Agric Food Chem 51: 5497-5503. https://doi.org/10.1021/jf030113c
  32. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Tech 11: 340-346. https://doi.org/10.1016/S0924-2244(01)00014-0
  33. Snell FD, Snell CT, Snell CA. 1961. Colorimetric methods of analysis. 3rd ed. Van Nostrand, Princeton, NJ, USA. Vol 3, p 77.
  34. Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB. 2010. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J Agric Food Chem 58: 8139-8144. https://doi.org/10.1021/jf1005935

Cited by

  1. Quality and Antioxidant Properties of Sponge Cake containing Radicchio (Cichorium intybus L.) Powder vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.910
  2. Physicochemical properties of jujube powder from Air, vacuum, and freeze drying and their correlations vol.55, pp.2, 2012, https://doi.org/10.1007/s13765-012-1039-3
  3. Antioxidant and Antiproliferative Activity of Extracts from Water Chestnut (Trapa japonica Flerow) vol.24, pp.1, 2016, https://doi.org/10.7783/KJMCS.2016.24.1.14
  4. Influence of Sulfur Fertilization on Quality Characteristics and Antioxidant Activities of Onions during Storage at 4℃ vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1776
  5. Effects of Proteins on the Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.299
  6. Standardization for Analysis Method of Total Polyphenol in Complex of Picao Preto vol.33, pp.1, 2018, https://doi.org/10.13103/JFHS.2018.33.1.44
  7. 저장조건에 따른 생물전환 발효고려엉겅퀴 주정추출물의 안정성 조사 vol.30, pp.2, 2011, https://doi.org/10.9799/ksfan.2017.30.2.388
  8. 허브의 첨가에 의한 대두유의 산패억제 효과 vol.25, pp.1, 2011, https://doi.org/10.11002/kjfp.2018.25.1.36
  9. n-Hexane 및 Ethyl Acetate를 이용한 Willamette 품종 라즈베리추출물의 페놀 화합물 함량 및 항산화 효능 연구 vol.46, pp.4, 2011, https://doi.org/10.15230/scsk.2020.46.4.329
  10. Evaluation of Antioxidant Activity and Cytotoxicity in Mixture Extract of Artemisia asiatica Nakai and Moringa oleifera Lam vol.26, pp.4, 2011, https://doi.org/10.15616/bsl.2020.26.4.296
  11. Antioxidant Properties and Protective Effects of Aerial Parts from Cnidium officinale Makino on Oxidative Stress-Induced Neuronal Cell Death vol.26, pp.2, 2011, https://doi.org/10.3746/pnf.2021.26.2.200